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Announcements (4/22)
❑ Presentations (see canvas/slack after class for more details)

o Location (Shepherd Drone Lab)
o Poster Format and Printing Information
o Presentation Dates

✔ Group B → April 29
✔ Group A →May 1

o All students must show up for both days to give feedback to other students
❑ HW5 Due Today (4/22)
❑ HW6 Out (Due May 5)
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do not, especially on 

harder tasks
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What is Reasoning

The State of LLM Reasoning Model Inference (Raschka, 2025)

Models that use 

intermediate steps to 

answer questions 

oftentimes perform 

better than those which 
do not, especially on 

harder tasks

How can we get models to reason more 

in order to get to the right solution?
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What is Reasoning
❑ In a more general sense, reasoning 

increases the number of generated 
tokens to improve model 
performance

❑ We examine several approaches 
that achieve significant performance 
improvement by increasing this 
‘reasoning’ (i.e. increasing the 
number of tokens generated)
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Different Kinds of Reasoning
❑ Test-time Scaling

o Parallel
o Tree-Search
o Refinement

❑ Training Reasoners
o Revisiting RLHF & PPO
o From PPO to GRPO
o RLHF to RLVR
o Distillation from reasoning models
o DeepSeek deepdive

❑ Latent Space Reasoning 
o Methods (Inner Thinking/Latent Reasoning/CoCoNut)
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Test-Time Scaling (Prompting)
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Test-Time Scaling (Prompting)

Good initial step for better results – but not as scalable. We have less control 
over increasing the number of generated tokens.
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Test-Time Scaling Overview
❑ Test-Time Scaling Approaches

o Parallel
o Tree Search
o Refinement
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Parallel Generation
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Parallel Generation (Best-of-N)

Stiennon, et. al (2020), Nakano et. al (2022)
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Q: What is a ‘perfect 
reward model’?
A: A ‘perfect reward 
model’ allows us to 
always select the 
correct answer if it is 
given.
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Best of N: Finding a reward model in practice

Cobbe et. al (2021)
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Best of N: Finding a reward model in practice

Stiennon et. al (2020)
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Why Best of N?
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Best of N (example)

Cobbe et. al (2020)
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Parallel Generation (Voting)

Wang et. al (2023)
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Parallel Generation (Weighted Voting)

Li et. al (2023)
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Parallel Generation (Weighted Voting)

[Sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.
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Parallel Generation 

Zhang et. al (2024)
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Parallel Generation 
❑ Parallel

o Explores output space by generating full sequences
o Large performance gains in practice
o Bounded by the quality of the evaluator and generator

❑ Insight: only uses the verifier at the end (full sequence outputs)
o Next: How can intermediate evaluation improve on this approach
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Test-Time Scaling Approaches
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Tree Search

[Uesato et al., 2022, Lightman et al., 2024, Wang et al., 2024a]
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Tree Search

[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Tree Search

[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Tree Search (Example)
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Tree Search
❑ Can backtrack and explore using intermediate scores
❑ Requires a suitable environment and value function

o Decomposition into states
o Good reward signal 
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Refinement/self-correction
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In practice, the quality and source of feedback is crucial:  
❑ Extrinsic: external information at inference time 
❑ Intrinsic: no external information at inference time

Refinement/self-correction
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Refinement (Extrinsic)
❑ Extrinsic: External Feedback
❑ Succuess cases

o Verifiers [Aggarwal et al., 2024]
o Code interpreters [Chen et al., 2024]
o Retrievers [Asai et al., 2024]
o …

❑ Intuition: adds new information that allows detection and localization of 
erros



CSCI 5541 NLP

Refinement (Intrinsic)
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Refinement (Intrinsic)
Mixed results 
❑ Easy to evaluate tasks: positive [Wang et al., 2024]
❑ Mathematical reasoning: mixed [Huang et al., 2024] 
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Refinement
Refinement / self-correction
❑ Extrinsic

o Positive results for environments that detect or localize errors
❑ Intrinsic

o Mixed results, depends on difficulty of verification
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Latent Space Reasoning

❑ Test-time strategies rely on 
already trained models in order to 
get improvements with more 
token generation
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Latent Space Reasoning

❑ Test-time strategies rely on 
already trained models in order to 
get improvements with more 
token generation 

❑ What if we just trained the models 
to reason directly?
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Training Reasoners

❑ Revisiting RLHF & PPO
❑ From PPO to GRPO
❑ RLHF to RLVR
❑ Distillation from Reasoning Models
❑ DeepSeek deepdive
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From PPO to GRPO

Guo et al., (2025)
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RLHF to RLVR
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RLHF to RLVR
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RLHF to RLVR
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RLHF to RLVR (RL with Verifiable Rewards)
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Distillation from Reasoning Models

1. Train a large, very capable 
reasoning language model

2. Get a number of outputs from 
this reasoning model (i.e. curate a 
reasoning dataset

3. Train smaller language models 
with SFT on this reasoning 
dataset
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Distillation from Reasoning Models

1. Train a large, very capable 
reasoning language model

2. Get a number of outputs from 
this reasoning model (i.e. curate a 
reasoning dataset)

3. Train smaller language models 
with SFT on this reasoning 
dataset
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Training (DeepSeek R1 deepdive)
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DeepSeek R1

DeepSeek R1 was one of 
the first efforts to open 
source models trained 
explicitly to reason

Guo et al., (2025)
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Base Model

Base Model from 
pretraining

Guo et al., (2025)
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DeepSeek-R1-Zero

❑ DeepSeek-R1-Zero is 
trained with RLVR

❑ No SFT was applied, only 
RL

Guo et al., (2025)
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DeepSeek R1-Zero (Rewards)
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DeepSeek R1-Zero (Performance)

Guo et al., (2025)
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DeepSeek-R1
❑ Collect cold start data 

from R1-Zero using CoT, 
and altered prompts

❑ Use human annotated 
post-processing on this 
data

❑ Use SFT on base model 
with this post-processed 
dataset

\\

Guo et al., (2025)
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DeepSeek-R1
❑ Apply RLVR to model 

trained with SFT on “cold 
start” data

❑ Use same accuracy, 
format rewards as was 
used for R1-Zero

❑ Add consistency reward 
to prevent language-
switching

Guo et al., (2025)
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DeepSeek-R1
❑ Using model from 

previous slide, curate a 
reasoning dataset (CoT
data)

❑ Sample from this model 
only when correct and 
apply simple reward 
based filters

Guo et al., (2025)
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DeepSeek-R1
❑ Sample non-reasoning 

data from the base 
model

❑ Sample for tasks related 
to writing, factual QA, 
self-cognition, and 
translation, etc.

Guo et al., (2025)
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DeepSeek-R1
❑ Using the two curated 

datasets, perform SFT 
on the base model

❑ Combined, this is a 
dataset of around 800K 
generated, rather than 
human created, 
instances

Guo et al., (2025)
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DeepSeek-R1

❑ After applying SFT to the 
base model, combine 
RLVR and RLHF 
methods to produce the 
final model (DeepSeek-
R1)

Guo et al., (2025)



CSCI 5541 NLP

DeepSeek-R1

❑ Very strong model 
performance

❑ Note that the base 
model is a MoE model

❑ Strongest open source 
result up to that point

Guo et al., (2025)



CSCI 5541 NLP

DeepSeek-R1-{Qwen, Llama} (*B)

❑ Apply SFT to Llama3 and 
Qwen2.5 models using 
the ~800k SFT data from 
the pipeline

❑ Note: Only SFT is applied 
at this point, no RL is 
used

Guo et al., (2025)
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DeepSeek-R1-{Qwen, Llama} (*B)
❑ Even without any reinforcement learning, SFT with a reasoning dataset is  

sufficient to achieve very good performance with these other open Small 
Language Models (SLMs)

❑ Opens possibility of improving SLMs by curating better reasoning datasets 

Guo et al., (2025)
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DeepSeek Main Contributions (3 key areas)
1. Possible to train reasoning model 

with RL alone on math/coding 
(DeepSeek-R1-Zero)

2. It is possible to curate a reasoning 
dataset that enables SFT for 
reasoning models (DeepSeek-R1-
{Qwen, Llama} (*B))

3. Open Sources RL + SFT solution 
which is competitive with closed-
source models (DeepSeek-R1)

Guo et al., (2025)



CSCI 5541 NLP

Latent Space Reasoning



CSCI 5541 NLP

Latent Space Reasoning

❑ What if, instead of generating 
more tokens at inference, we just 
used more compute by altering 
the hidden states of the 
transformer itself
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Latent Space Reasoning

❑ What if, instead of generating 
more tokens at inference, we just 
used more compute by altering 
the hidden states of the 
transformer itself

❑ In analogical terms, less talking, 
more thinking
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Methods (Inner Thinking Transformer)

Chen et al., (2025)
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Methods (Scaling up Test-Time Compute with 
Latent Reasoning)

Geiping et al., (2025)
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Training Large Language Models to Reason in a 
Continuous Latent Space

Hao et al., (2024)
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