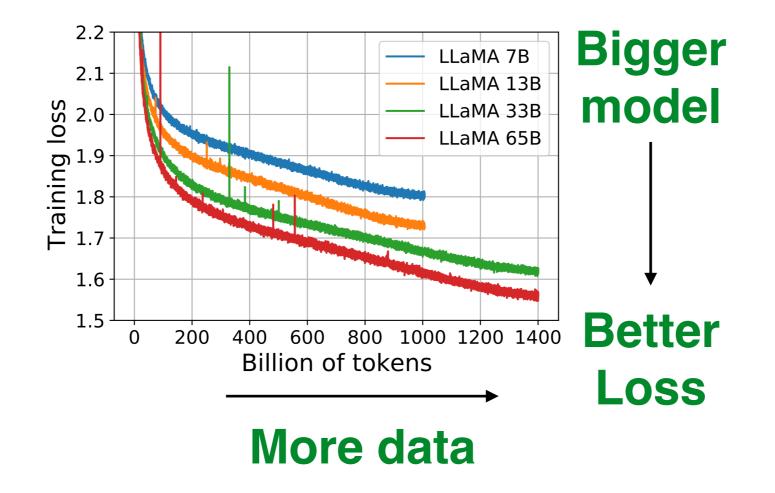
Scaling and Parallelism

James Mooney

Slides from Sean Welleck

Recap: pre-training





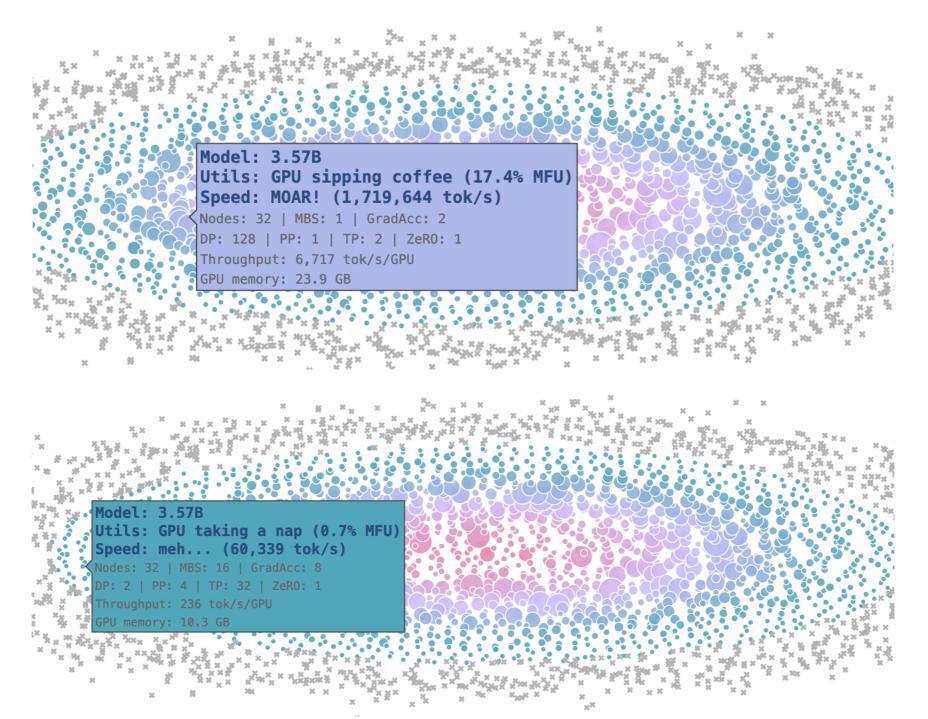
Scale the training of LLMs

- Key problem: take advantage of multiple devices (e.g., GPUs)
 - Train larger models
 - Process more tokens in a given amount of time

Scale the training of LLMs

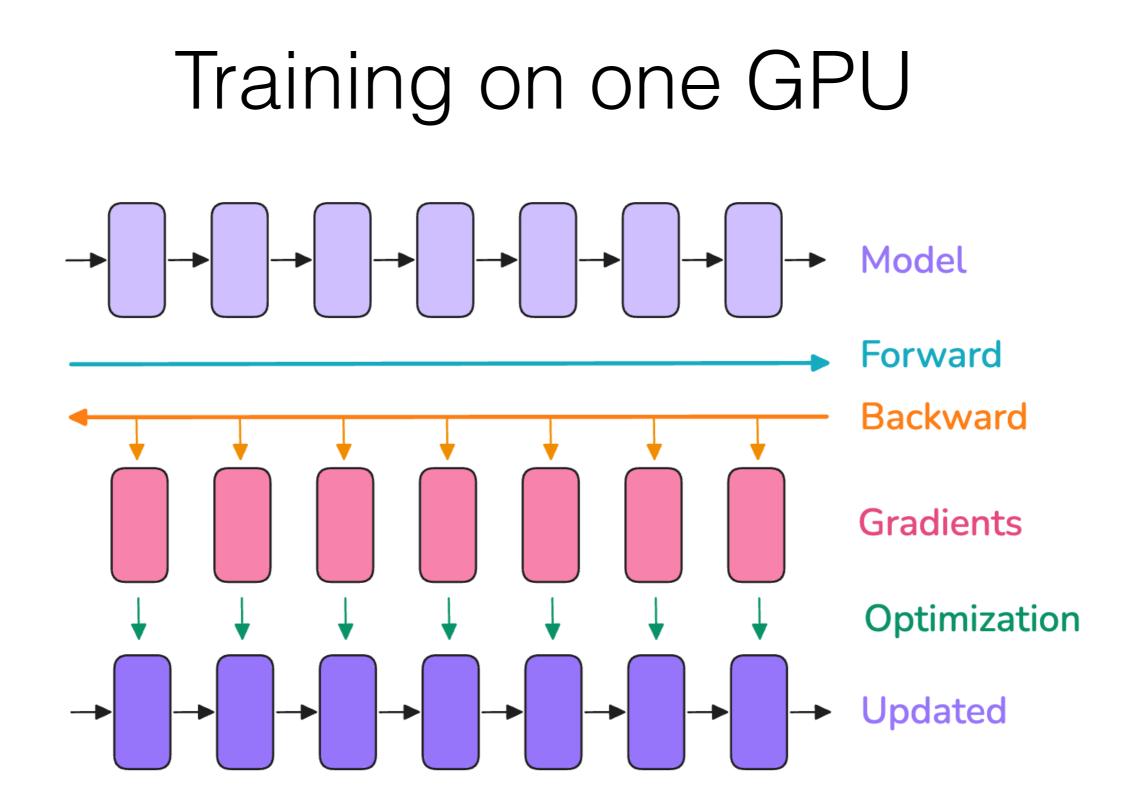
- Memory usage: training steps need to fit in memory
- Compute efficiency: we want our hardware to spend most time computing
- Communication overhead: minimize since it keeps GPUs idle

Large impact



Today's lecture

- Basics of training on one GPU
- Parallelization on multiple GPUs
 - Data, tensor, pipeline parallelism, ZeRO
- Choosing and comparing strategies



Training basics

- Compute
- Memory
 - Activation recomputation
 - Gradient accumulation

Compute

- Compute: floating point operations (FLOP)
 - Forward and backward pass:

6 × model_parameters × token_batch_size

• FLOPS: floating point operations per second

Compute

• Model FLOP Utilization (MFU) measures how effectively available compute is used for training

 $MFU = \frac{Achieved FLOPS}{Theoretical Peak FLOPS}$

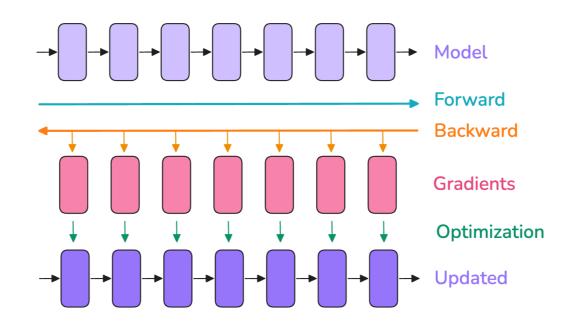
• Theoretical peak (H100):

	H100 SXM	
FP64	34 teraFLOPS	
FP64 Tensor Core	67 teraFLOPS	
FP32	67 teraFLOPS	
TF32 Tensor Core*	989 teraFLOPS	
BFLOAT16 Tensor Core*	1,979 teraFLOPS	

Technical Specifications

 Inefficiencies: communication, memory bandwidth, idle time (discussed later!)

- Weights, gradients, optimizer states, activations
 - Tensors with shapes and precisions

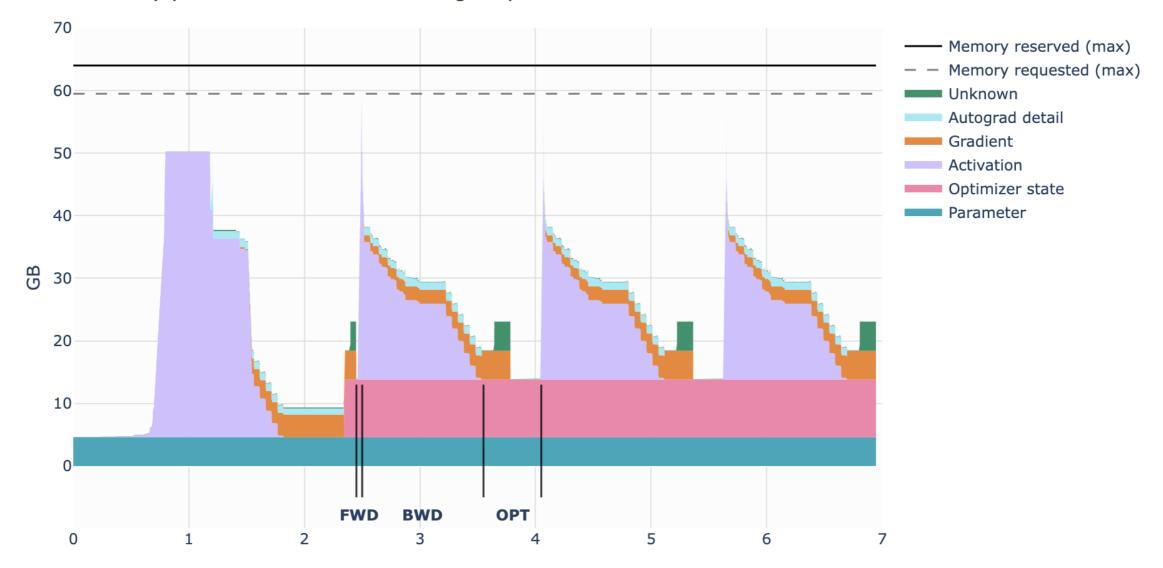


• A rough approximation for a training step:

peak_memory = model_bf16 + model_fp32 + grads_fp32 + optim_states + activations

- BF16 model: 2 * num_parameters
- FP32 model/grads: 4 * num_parameters
- FP32 optimizer states: (4 + 4) * num_parameters
 - Adam momentum and variance

Memory profile of the first 4 training steps of Llama 1B



Model parameters	FP32 or BF16 w/o FP32 grad acc	BF16 w/ FP32 grad acc
1B	16 GB	20 GB
7B	112 GB	140 GB
70B	1120 GB	1400 GB
405B	6480 GB	8100 GB

H100 GPU: 80 GB

Batch size

- Small: adjust parameters quickly but noisily
- Large: adjust parameters accurately, fewer steps to train on a given dataset

$$bst = bs * seq$$

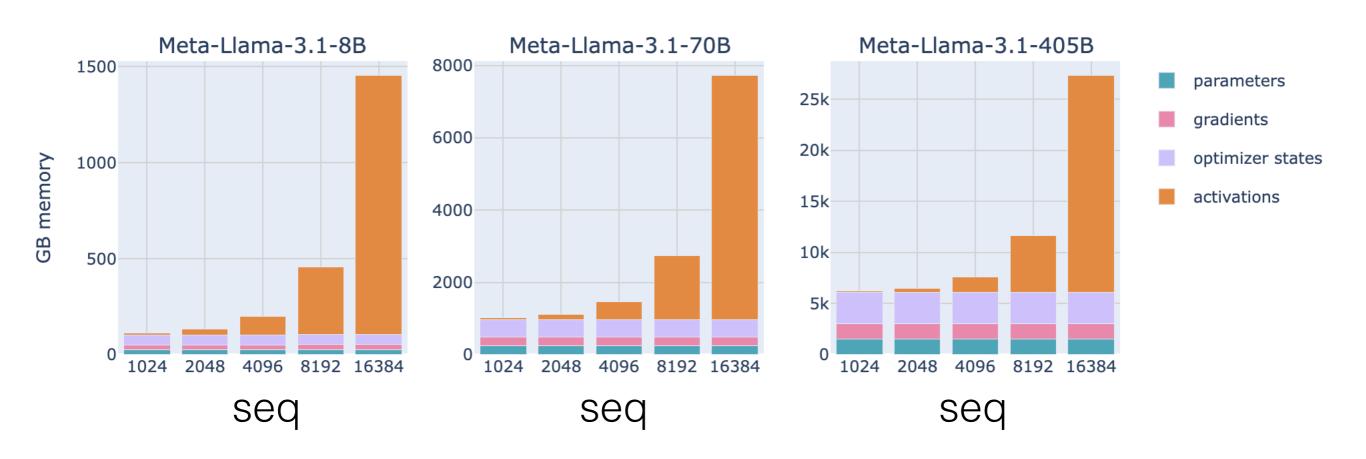
Typically ~4-60 million tokens per batch

• **Too large**: out of memory due to large activations!

Memory usage: activations

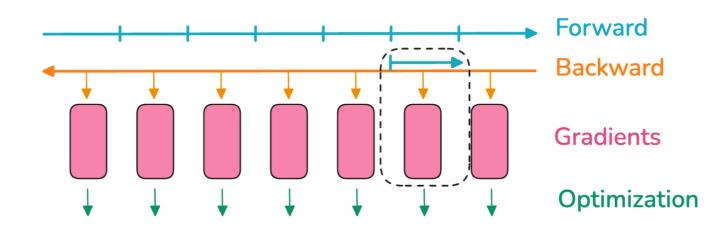
$$m_{act} = L \cdot seq \cdot bs \cdot h \cdot (34 + \frac{5 \cdot n_{heads} \cdot seq}{h})$$

• Linear with batch size, quadratic sequence length



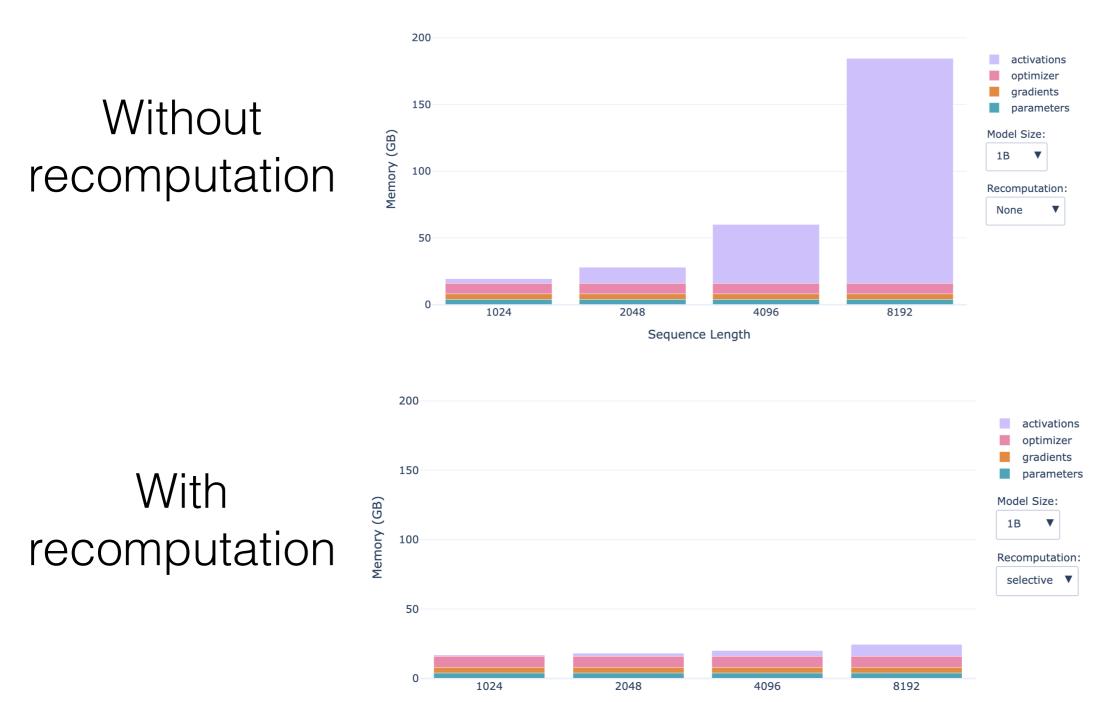
Activation recomputation

- Recompute some activations during the backward pass
 - Store some activations during the forward pass as "checkpoints"
 - Discard other activations and recompute them during the backward pass
- Increases compute, reduces activation memory requirements



Activation recomputation

Memory Usage with Recomputation



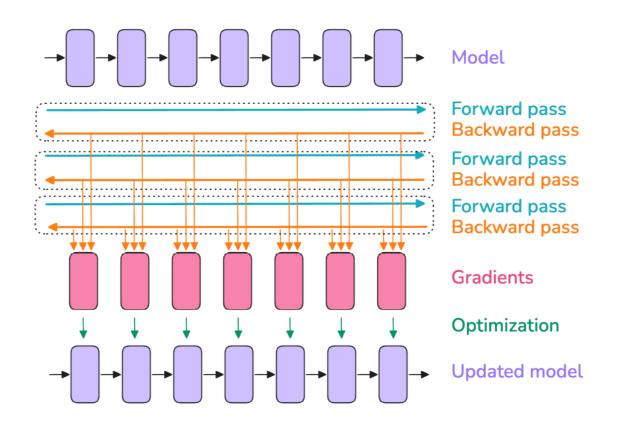
Sequence Length

Gradient accumulation

• Split batch into micro-batches, do forward/backward passes on each micro-batch, average the gradients

$$bs = gbs = mbs \cdot grad_acc$$

• Lets you increase batch size with constant memory



Recap: basics (single GPU)

- **Compute**: FLOPS and MFU
- **Memory**: parameters, gradients, optimizer states, activations
- Activation recomputation: save memory, add compute
- Gradient accumulation: save memory, add compute
- Use of memory savings: larger batch size and/or larger model

Multiple GPUs: Parallelism

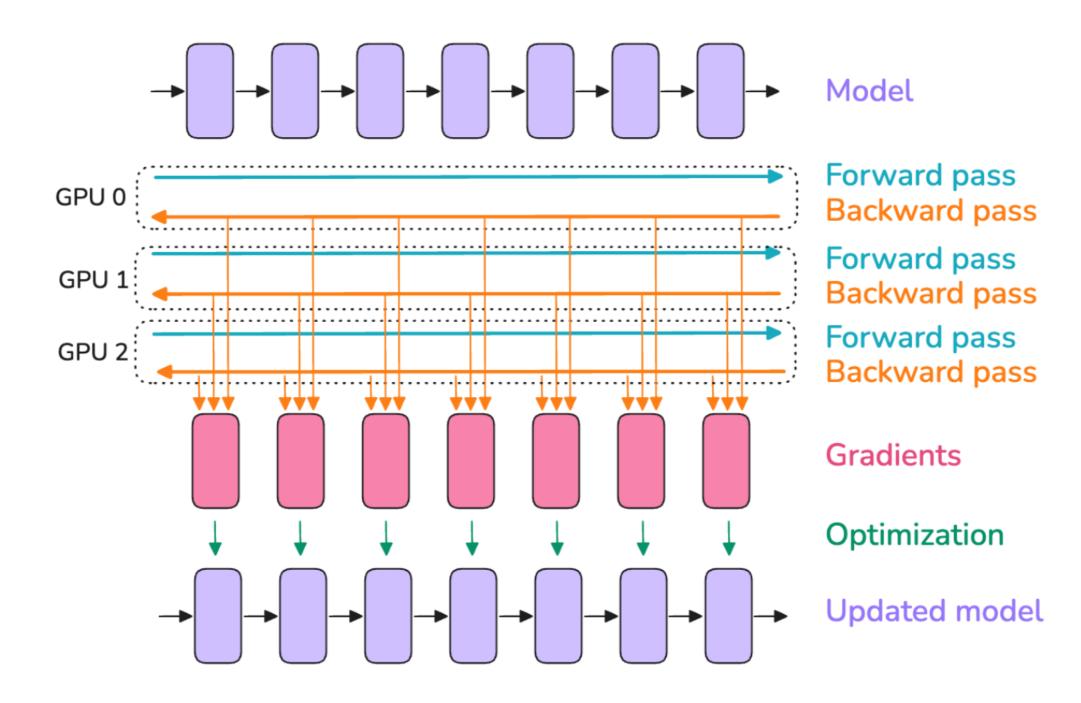
Parallelism

- Techniques for leveraging computation and memory from multiple GPUs
 - Data parallelism
 - Tensor parallelism
 - Pipeline parallelism
 - Memory optimization
 - Choosing parallelism strategies

Data Parallelism

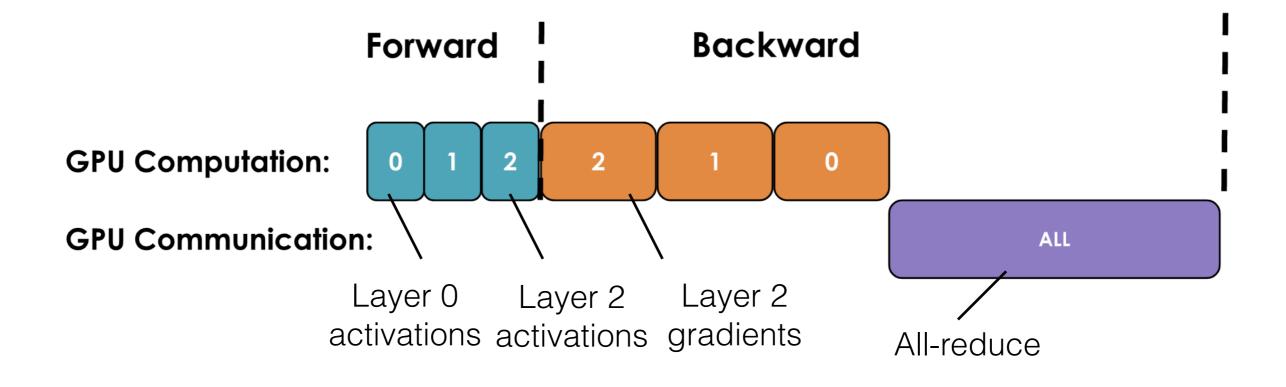
- Replicate model on several GPUs
- Run forward / backward passes on different microbatches in parallel for each GPU
- Average the gradients across the GPUs

Data Parallelism



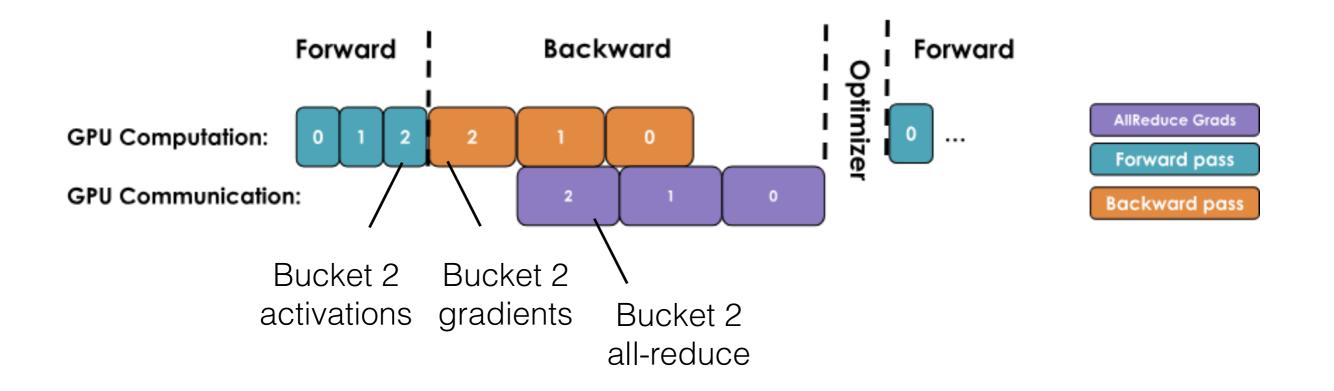
Data Parallelism: Naive

 Wait for all backward passes to finish, trigger an allreduce over all GPUs



Overlap + bucketing

- Start all-reduce as soon as gradients are ready
- Group gradients into buckets and launch a single all-reduce for all the gradients in the same bucket



Data Parallelism: + bucketing

59 class B	ucketManager:
	init(self, params: List[torch.nn.Parameter], process_group: torch.distributed.ProcessGroup, bucket_size:
83 84 5 4 4 5	initialize hugkets(solf) > Names
	_initialize_buckets(self) -> None:
85 86	Divides model parameters into buckets for gradient synchronization based on the bucket size.
87	num
88	<pre>cur_bucket_size = 0</pre>
89	cur_bucket_idx = 0
90	
91	# Assign parameters to buckets.
92	for param in self.params:
93	if not param.requires_grad:
94	continue
95	
96	# If the bucket is empty, add the parameter to the bucket.
97	<pre>if cur_bucket_size == 0:</pre>
98	<pre>self.params_to_bucket_location[param] = (0, param.numel(), cur_bucket_idx)</pre>
99	<pre>cur_bucket_size = param.numel()</pre>
L00	continue
101	
102	# If the parameter cannot fit in the current bucket, create a new bucket
L03	<pre>if cur_bucket_size + param.numel() > self.bucket_size:</pre>
L04	cur_bucket_idx += 1
105	<pre>self.params_to_bucket_location[param] = (0, param.numel(), cur_bucket_idx)</pre>
106	<pre>cur_bucket_size = param.numel()</pre>
107	else:
108	<pre>self.params_to_bucket_location[param] = (cur_bucket_size, cur_bucket_size + param.numel(), cur_bucke</pre>
109	cur bucket size += param.numel()

Batch size summary

global batch size = $mbs \cdot grad_acc \cdot dp$

- mbs: micro batch size
- grad_acc: gradient accumulation steps
- dp: number of parallel instances

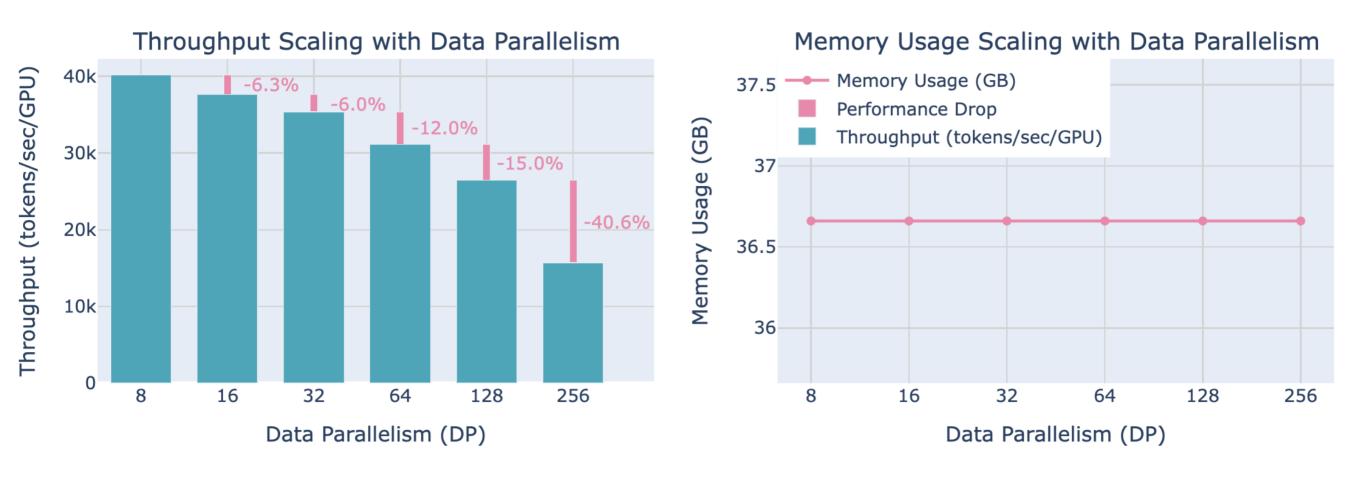
Putting it all together

- Global batch size: 4 million tokens
- Sequence length: 4,000 tokens
 - \implies batch size: 1024 sequences
- mbs: Suppose 1 GPU fits 2 sequences
- dp: 128 GPUs: 2*128 = 256
- grad_acc of 4: 256*4 = 1024

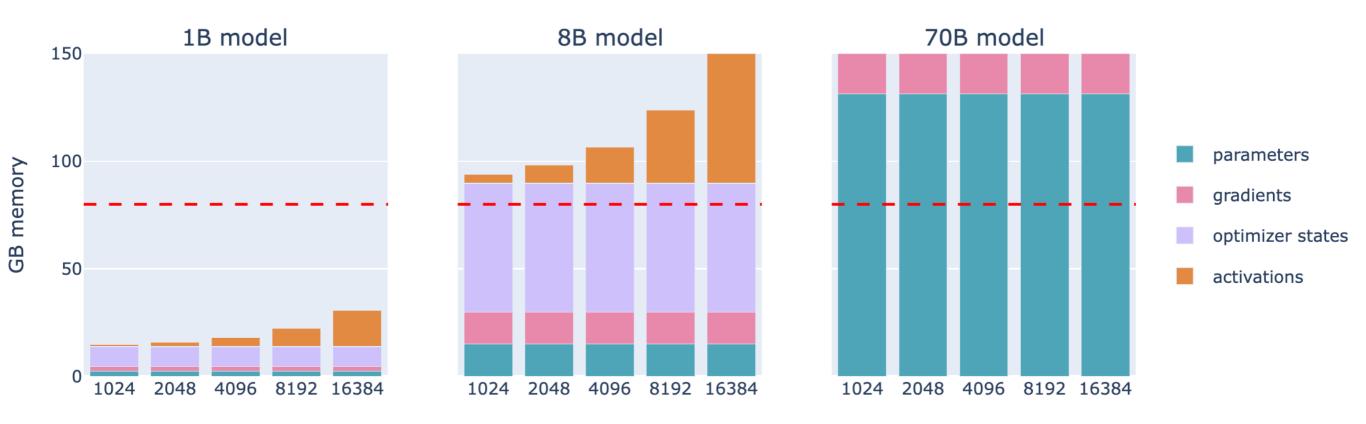
Quiz: what if we had 512 GPUs?

Data Parallelism scaling

 More GPUs means more coordination (e.g., allreduce, network communication, stragglers)



What if the model is too large?



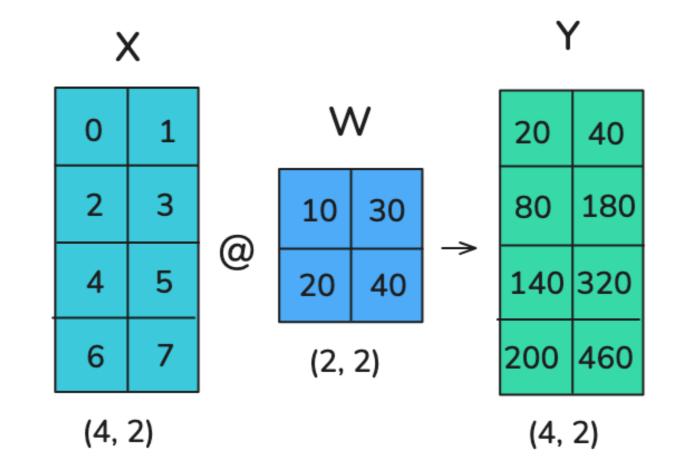
- Split tensors:
 - Parallelism (e.g., tensor, pipeline)
 - Sharding (DeepSpeed ZeRO or PyTorch FSDP)

Parallelism

- Techniques for leveraging computation and memory from multiple GPUs
 - Data parallelism
 - Tensor parallelism
 - Pipeline parallelism
 - Memory optimization
 - Choosing parallelism strategies

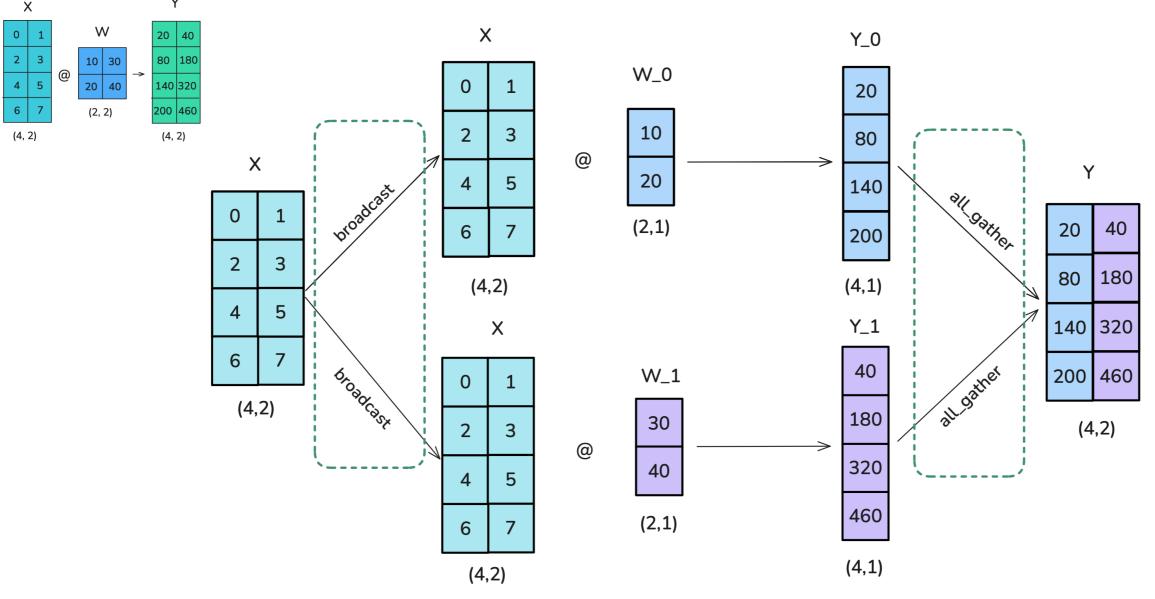
Tensor Parallelism

• Basic idea: take advantage of the structure of matrix multiplication to distribute computation across multiple GPUs.



Column-wise

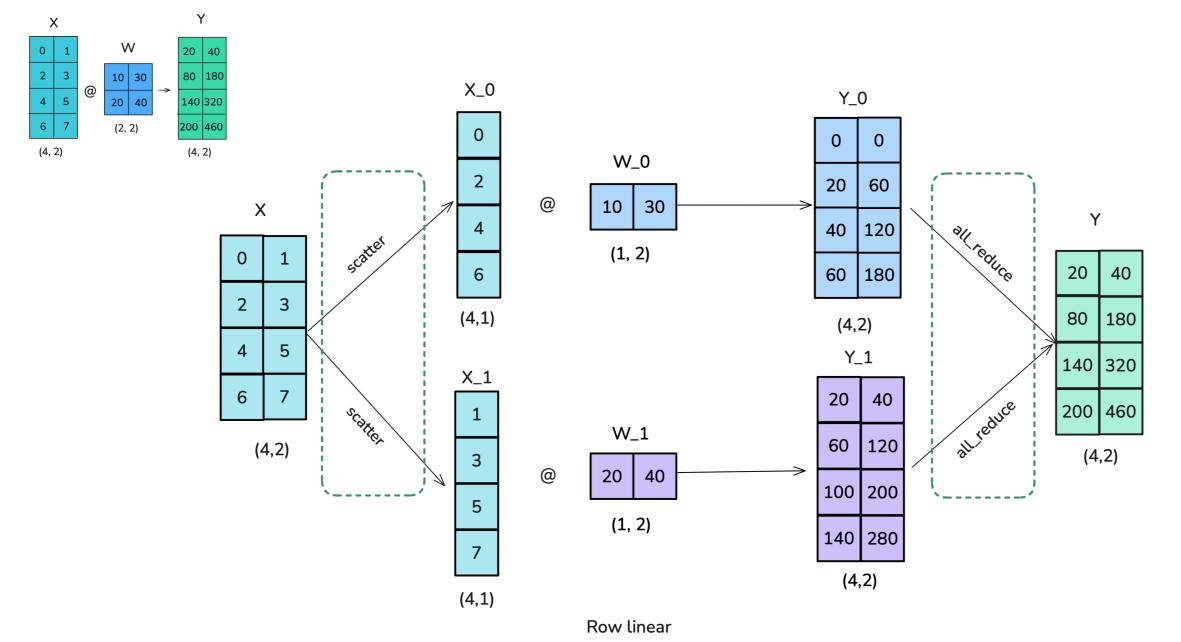
• Split weight matrix into columns, each GPU handles a column chunk



Column linear

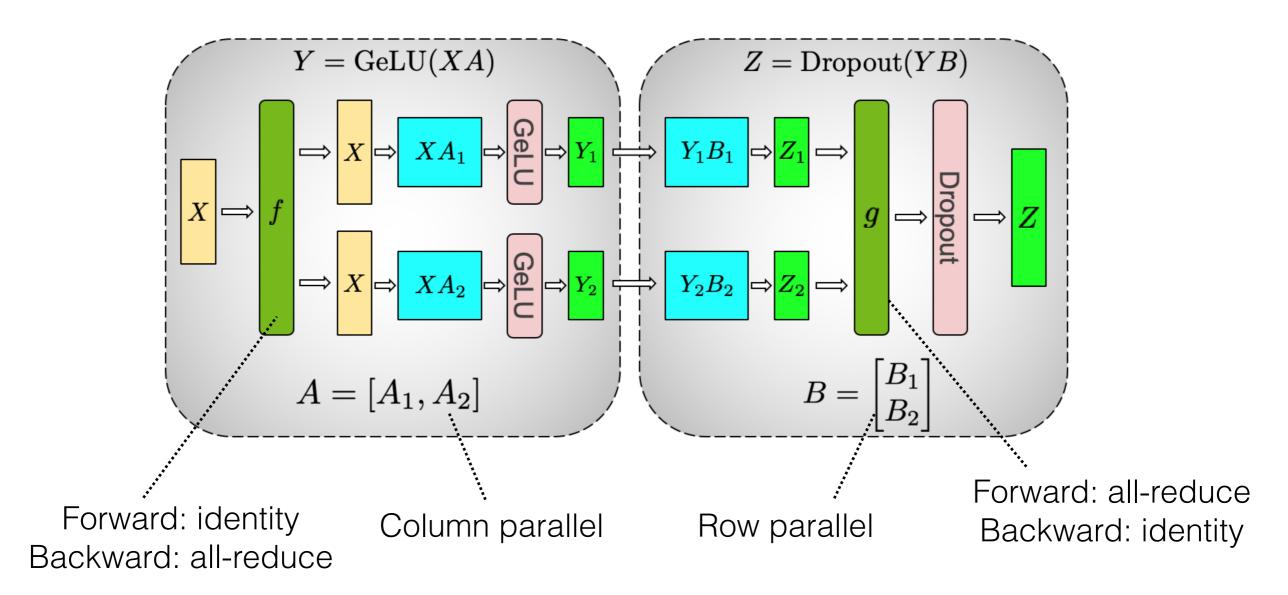
Row-wise

• Split weight matrix into rows (and split inputs into columns), then sum



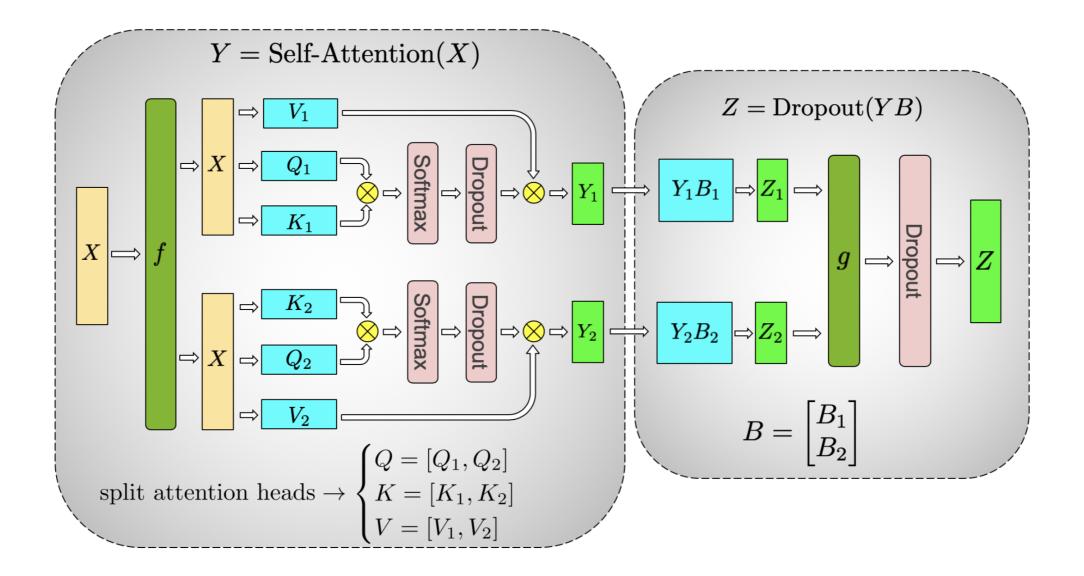
Example: feedforward

• Use column parallel, then row parallel (benefit: no intermediate all-reduce/gather)



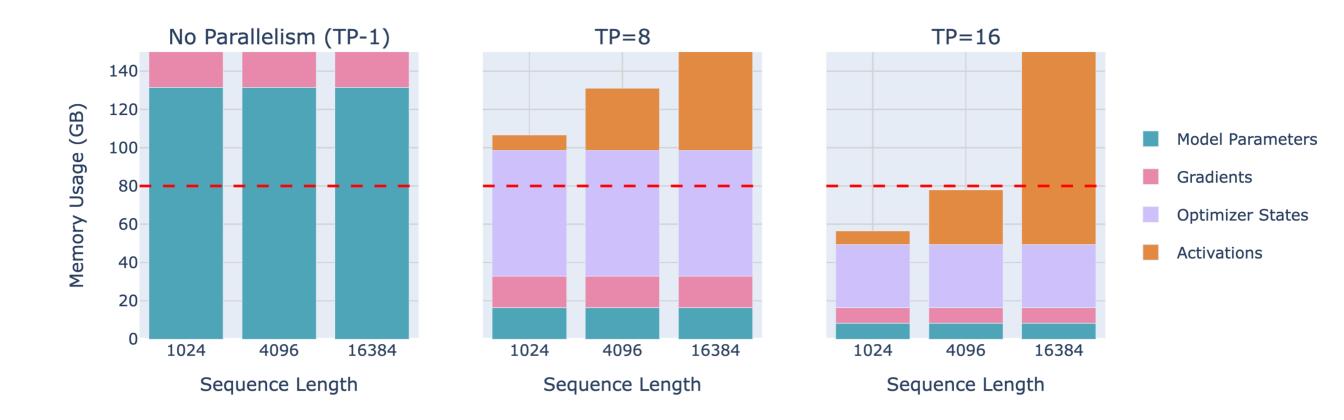
Example: attention

Each GPU handles a subset of attention heads

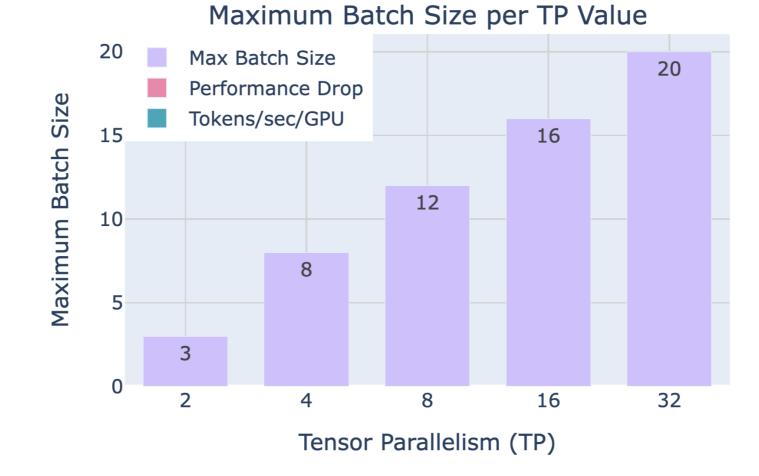


• Benefit: reduce memory requirements

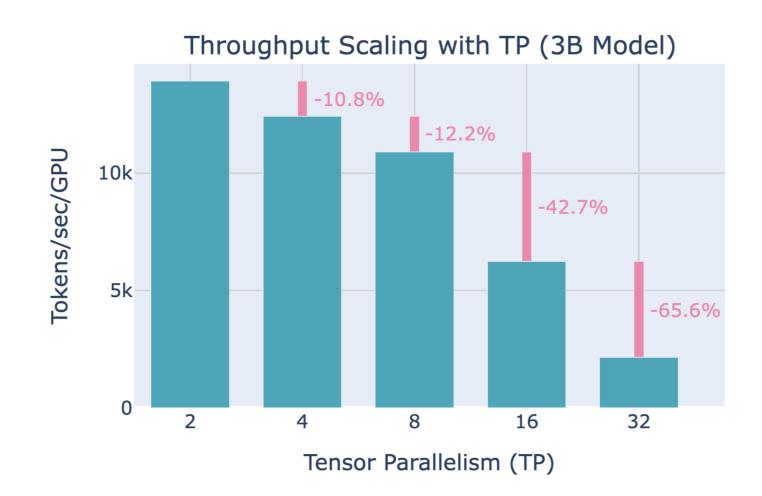
Memory Usage for 70B Model



• Benefit: reduce memory requirements

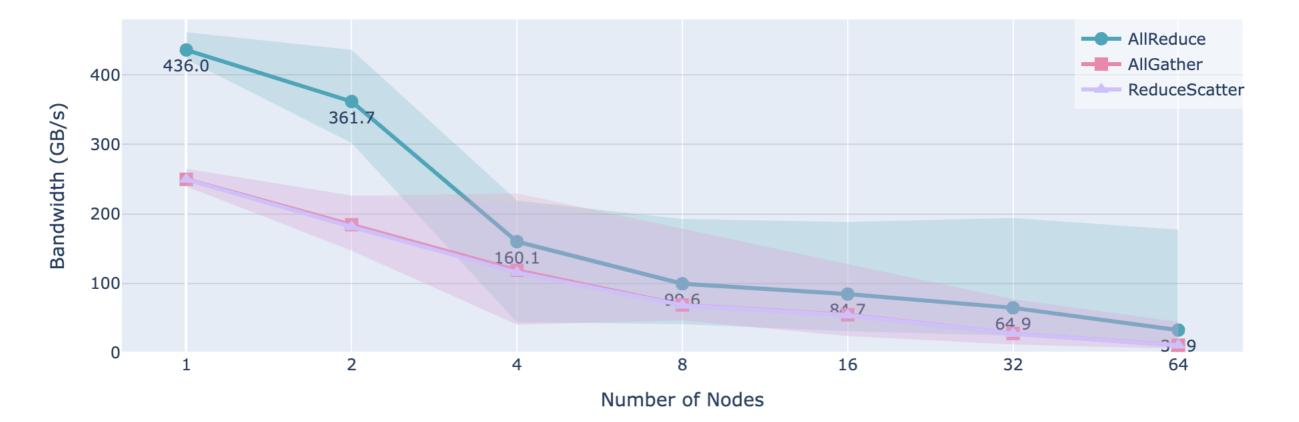


• Tradeoff: communication costs (e.g., all-reduce)



- Tradeoff: communication costs (e.g., all-reduce)
 - Cross-node connections particularly slow

Communication Bandwidth by Number of Nodes (size=256MB)



Parallelism

- Techniques for leveraging computation and memory from multiple GPUs
 - Data parallelism
 - Tensor parallelism
 - Pipeline parallelism
 - Memory optimization
 - Choosing parallelism strategies

Pipeline Parallelism

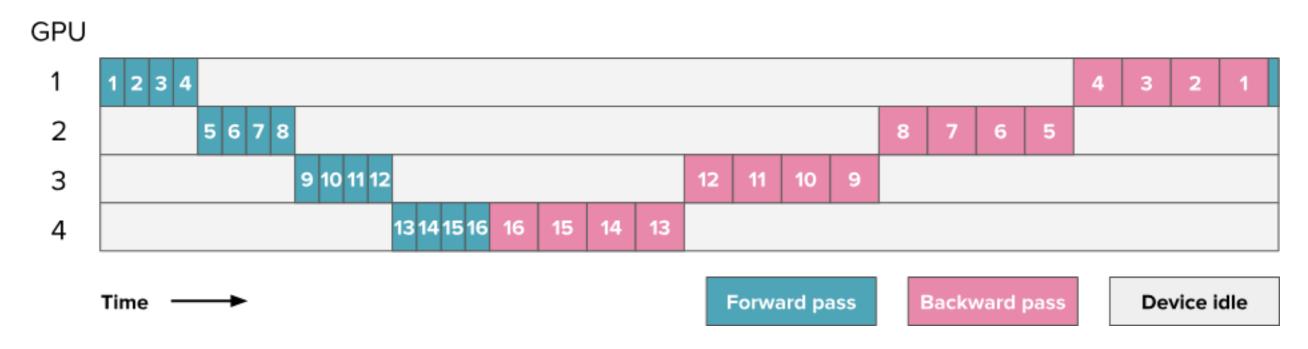
- Basic idea: split *layers* across multiple GPUs
 - E.g., layers 1-4 on GPU 1, layers 5-8 on GPU 2

No Parallelism PP=8140 120 Memory Usage (GB) Model Parameters 100 Gradients 80 **Optimizer States** 60 Activations 40 20 0 1024 4096 16384 1024 4096 16384 Sequence Length Sequence Length

Memory Usage for 8B Model

Pipeline Parallelism

• Basic idea: split layers across multiple GPUs

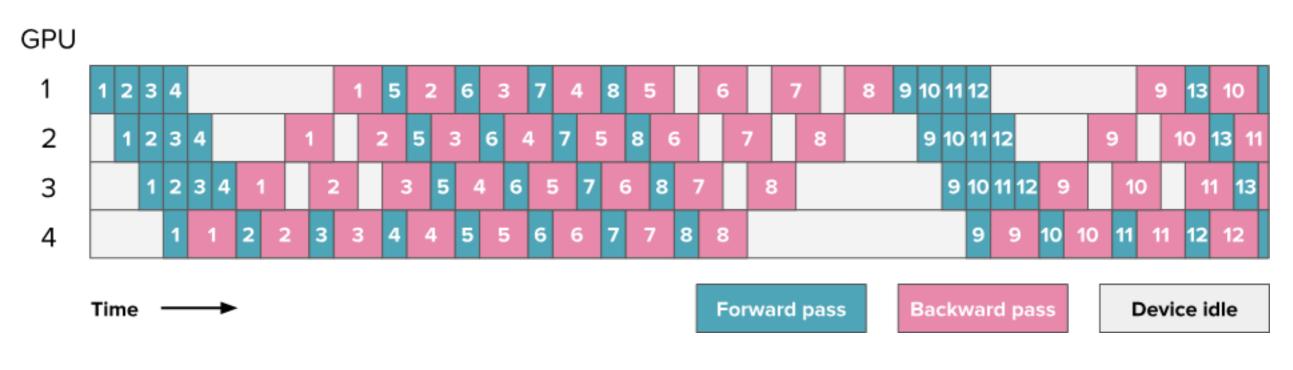


An example of Pipeline parallelism for a model with 16 layers distributed across 4 GPUs. The numbers correspond to the layer IDs.

Key challenge: reducing time lost due to the "bubble" (grey)

One-forward one-backward

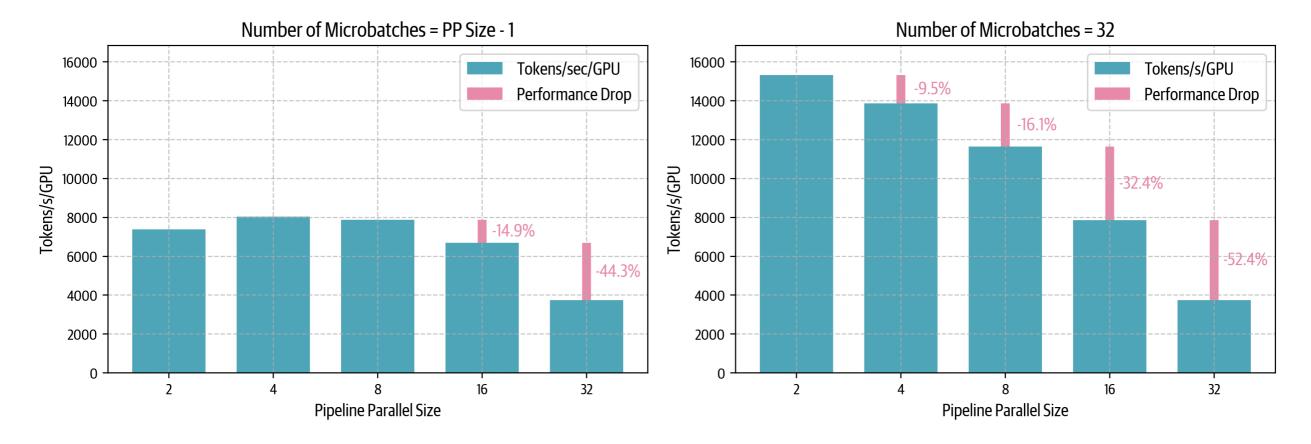
• Start performing backward pass as soon as possible



Numbers: microbatch

One-forward one-backward

Throughput Scaling with Pipeline Parallelism (1F1B schedule)



Small # of microbatches: inefficient due to bubble Better scaling with a larger # of microbatches

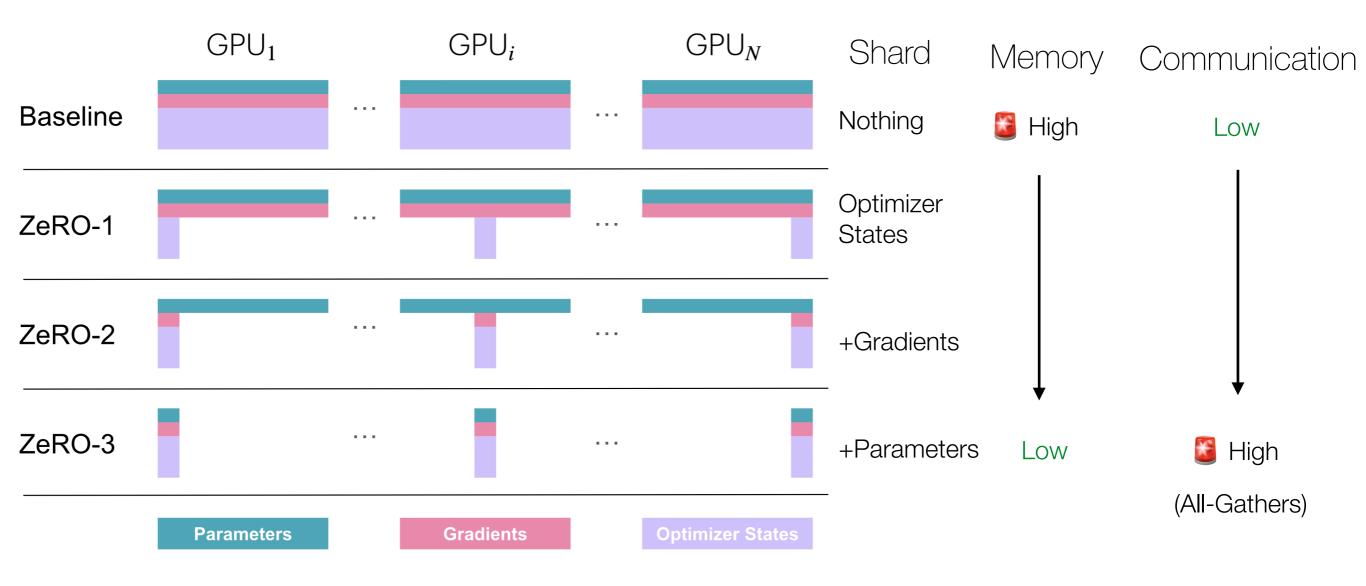
Scaling training

- Parallelism
 - Data parallelism
 - Tensor parallelism
 - Pipeline parallelism
- Memory optimization
- Choosing strategies

Memory optimization: ZeRO

- In standard Data Parallelism, each GPU replicates:
 - Model parameters
 - Gradients
 - Optimizer states
- Zero Redundancy Optimizer (ZeRO) partitions these across GPUs

Memory optimization: ZeRO



Memory optimization: ZeRO

- Key idea: load parameters just-in-time. Example:
 - Model: 1B parameters
 - 4 GPUs, each storing 250M parameters
 - At each layer ℓ :
 - GPU uses all-gather to fetch parameters for layer ℓ , computes activations
 - Free fetched parameter memory and continue to next layer
- Different than TP / PP! Only memory sharding, not sharding the computation

Recap of strategies

	Key Idea	Tradeoffs	Use Case		
Data Parallelism (DP)	Parallelize on batch dimension	Redundancy. Need to fit model on GPU.	Standard models that fit in GPU memory		
Tensor Parallelism (TP)	Parallelize on hidden dimension	Fine-grained => high communication costs.	Large layers (e.g. MLP). Parallelize within a node. Large deep models. Parallelize across nodes.		
Pipeline Parallelism (PP)	Parallelize on model dimension	Pipeline bubbles			
ZeRO	Sharding model, optimizer, gradients in DP	High communication costs (all-gather)	Big models that don't fit in GPU memory		

Often combined for efficient training (next)!

Scaling training

- Parallelism
 - Data parallelism
 - Tensor parallelism
 - Pipeline parallelism
- Memory optimization
- Choosing strategies

Choosing strategies

- Fit model into memory
- Satisfy target global batch size
- Optimize training throughput

Best configuration experiment

MFU and Memory Usage for Best Configurations					Best Configuration by Model Size and Number of Nodes						
64.0 	5.25 8.40GB	10.49 16.42GB	18.69 57.76GB	17.79 53.46GB	- 45	64.0 1	DP: 128 TP: 2 PP: 2 GAS: 1 MBS: 2 ZeRO-1	DP: 128 TP: 4 PP: 1 GAS: 1 MBS: 2 ZeRO-1	DP:128 TP:4 PP:1 GAS:1 MBS:2 ZeRO-0	DP: 32 TP: 16 PP: 1 GAS: 4 MBS: 2 ZeRO-1	- 45
32.0	23.20 19.57GB	26.77 38.98GB	32.71 63.39GB	30.75 64.21GB	- 40	32.0	DP: 64 TP: 4 PP: 1 GAS: 1 MBS: 4 ZeRO-0	DP: 64 TP: 4 PP: 1 GAS: 1 MBS: 4 ZeRO-0	DP: 32 TP: 8 PP: 1 GAS: 1 MBS: 8 ZeRO-0	DP: 4 TP: 4 PP: 16 GAS: 64 MBS: 1 ZeRO-1	- 40
les 16.0	29.46 38.84GB	34.59 66.20GB	36.33 66.88GB	34.29 61.18GB	- 35 - 30	des 16.0	DP: 64 TP: 2 PP: 1 GAS: 1 MBS: 4 ZeRO-0	DP: 32 TP: 4 PP: 1 GAS: 1 MBS: 8 ZeRO-0	DP: 16 TP: 8 PP: 1 GAS: 2 MBS: 8 ZeRO-0	DP:1 TP:4 PP:32 GAS:256 MBS:1 ZeRO-0	- 35 - 30
Number of Nodes 8.0	32.47 16.27GB	35.53 36.73GB	39.50 59.09GB	30.65 63.07GB	- 25 NH	Number of Nodes 8.0	DP: 32 TP: 1 PP: 2 GAS: 8 MBS: 1 ZeRO-1	DP: 32 TP: 1 PP: 2 GAS: 8 MBS: 1 ZeRO-1	DP: 32 TP: 1 PP: 2 GAS: 8 MBS: 1 ZeRO-1	DP:1 TP:4 PP:16 GAS:256 MBS:1 ZeRO-0	- ₂₅ II
4.0 -	38.38 16.39GB	40.39 53.33GB	43.31 61.10GB	14.76 65.97GB	- 20	4.0 Nui	DP: 16 TP: 1 PP: 2 GAS: 16 MB5: 1 ZeRO-1	DP: 16 TP: 1 PP: 2 GAS: 8 MBS: 2 ZeRO-1	DP: 16 TP: 1 PP: 2 GAS: 16 MBS: 1 ZeRO-1	DP:1 TP:8 PP:4 GAS:256 MBS:1 ZeRO-0	- 20
- 2.0	41.59 19.45GB	43.77 54.31GB	43.94 58.34GB		- 15	- 20	DP: 8 TP: 1 PP: 2 GAS: 32 MBS: 1 ZeRO-1	DP: 8 TP: 1 PP: 2 GAS: 16 MBS: 2 ZeRO-1	DP: 4 TP: 4 PP: 1 GAS: 16 MBS: 4 ZeRO-1		- 15
1.0	44.32 41.76GB	46.68 56.87GB	45.22 63.07GB		- 10	- 1.0	DP: 4 TP: 1 PP: 2 GAS: 16 MBS: 4 ZeRO-1	DP: 4 TP: 1 PP: 2 GAS: 32 MBS: 2 ZeRO-1	DP: 2 TP: 1 PP: 4 GAS: 128 MB5: 1 ZeRO-1		- 10
	1.34	3.57 Model Size (Billi	8.86 on Parameters)	80.0			1.34	3.57 Model Size (Bill	8.86 ion Parameters)	80.0	

GBS 1M tokens, sequence length 4096, 1-64 8xH100 nodes

Scaling training

- Parallelism
 - Data parallelism
 - Tensor parallelism
 - Pipeline parallelism
- Memory optimization
- Choosing strategies