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Scale the training of LLMs

• Key problem: take advantage of multiple devices 
(e.g., GPUs) 

• Train larger models 

• Process more tokens in a given amount of time



Scale the training of LLMs

• Memory usage: training steps need to fit in 
memory 

• Compute efficiency: we want our hardware to 
spend most time computing 

• Communication overhead: minimize since it 
keeps GPUs idle



Large impact



Today’s lecture

• Basics of training on one GPU 

• Parallelization on multiple GPUs 

• Data, tensor, pipeline parallelism, ZeRO 

• Choosing and comparing strategies



Training on one GPU



Training basics

• Compute 

• Memory 

• Activation recomputation 

• Gradient accumulation



Compute

• Compute: floating point operations (FLOP) 

• Forward and backward pass: 

 

• FLOPS: floating point operations per second

6 × model_parameters × token_batch_size



Compute
• Model FLOP Utilization (MFU) measures how 

effectively available compute is used for training 

 

• Theoretical peak (H100): 

• Inefficiencies: communication, memory bandwidth, 
idle time (discussed later!)

MFU =
Achieved FLOPS

Theoretical Peak FLOPS



Memory usage

• Weights, gradients, optimizer states, activations 

• Tensors with shapes and precisions



Memory usage
• A rough approximation for a training step: 

 

• BF16 model: 2 * num_parameters 

• FP32 model/grads: 4 * num_parameters 

• FP32 optimizer states: (4 + 4) * num_parameters 

• Adam momentum and variance

peak_memory = model_bf16 + model_fp32 + grads_fp32 + optim_states + activations



Memory usage



Memory usage

H100 GPU: 80 GB



Batch size

• Small: adjust parameters quickly but noisily 

• Large: adjust parameters accurately, fewer steps to 
train on a given dataset 

 

Typically ~4-60 million tokens per batch 

• Too large: out of memory due to large activations!

bst = bs * seq



Memory usage: activations

 

• Linear with batch size, quadratic sequence length

mact = L ⋅ seq ⋅ bs ⋅ h ⋅ (34 +
5 ⋅ nheads ⋅ seq

h
)

seq seq seq 



Activation recomputation
• Recompute some activations during the backward pass 

• Store some activations during the forward pass as 
“checkpoints” 

• Discard other activations and recompute them during the 
backward pass 

• Increases compute, reduces activation memory 
requirements



Activation recomputation

Without 
recomputation

With 
recomputation



Gradient accumulation
• Split batch into micro-batches, do forward/backward 

passes on each micro-batch, average the gradients 

 

• Lets you increase batch size with constant memory

bs = gbs = mbs ⋅ grad_acc



Recap: basics (single GPU)

• Compute: FLOPS and MFU 

• Memory: parameters, gradients, optimizer states, activations 

• Activation recomputation: save memory, add compute 

• Gradient accumulation: save memory, add compute 

• Use of memory savings: larger batch size and/or larger model



Multiple GPUs: Parallelism



Parallelism
• Techniques for leveraging computation and 

memory from multiple GPUs 

• Data parallelism 

• Tensor parallelism 

• Pipeline parallelism 

• Memory optimization 

• Choosing parallelism strategies



Data Parallelism

• Replicate model on several GPUs 

• Run forward / backward passes on different micro-
batches in parallel for each GPU 

• Average the gradients across the GPUs



Data Parallelism



Data Parallelism: Naive
• Wait for all backward passes to finish, trigger an all-

reduce over all GPUs

All-reduce
Layer 0 

activations
Layer 2 

activations
Layer 2 

gradients



Overlap + bucketing
• Start all-reduce as soon as gradients are ready 

• Group gradients into buckets and launch a single 
all-reduce for all the gradients in the same bucket

Bucket 2 
activations

Bucket 2 
gradients Bucket 2 

all-reduce



Data Parallelism: + bucketing



Batch size summary

 

• mbs: micro batch size 

• grad_acc: gradient accumulation steps  

• dp: number of parallel instances

global batch size = mbs ⋅ grad_acc ⋅ dp



Putting it all together
• Global batch size: 4 million tokens 

• Sequence length: 4,000 tokens 

•  batch size: 1024 sequences 

• mbs: Suppose 1 GPU fits 2 sequences 

• dp: 128 GPUs: 2*128 = 256 

• grad_acc of 4: 256*4 = 1024

⟹

Quiz: what if we had 512 GPUs?



Data Parallelism scaling
• More GPUs means more coordination (e.g., all-

reduce, network communication, stragglers)



What if the model is too large?

• Split tensors:  

• Parallelism (e.g., tensor, pipeline)  

• Sharding (DeepSpeed ZeRO or PyTorch FSDP)



Parallelism
• Techniques for leveraging computation and 

memory from multiple GPUs 

• Data parallelism 

• Tensor parallelism

• Pipeline parallelism 

• Memory optimization 

• Choosing parallelism strategies



Tensor Parallelism
• Basic idea: take advantage of the structure of 

matrix multiplication to distribute computation 
across multiple GPUs.



Column-wise
• Split weight matrix into columns, each GPU 

handles a column chunk



Row-wise
• Split weight matrix into rows (and split inputs into 

columns), then sum



Example: feedforward
• Use column parallel, then row parallel  

(benefit: no intermediate all-reduce/gather)

Forward: identity 
Backward: all-reduce

Forward: all-reduce 
Backward: identityColumn parallel Row parallel



Example: attention
• Each GPU handles a subset of attention heads



Tensor Parallelism
• Benefit: reduce memory requirements



Tensor Parallelism
• Benefit: reduce memory requirements



Tensor Parallelism
• Tradeoff: communication costs (e.g., all-reduce)



Tensor Parallelism
• Tradeoff: communication costs (e.g., all-reduce) 

• Cross-node connections particularly slow



Parallelism
• Techniques for leveraging computation and 

memory from multiple GPUs 

• Data parallelism 

• Tensor parallelism 

• Pipeline parallelism

• Memory optimization 

• Choosing parallelism strategies



Pipeline Parallelism
• Basic idea: split layers across multiple GPUs 

• E.g., layers 1-4 on GPU 1, layers 5-8 on GPU 2



Pipeline Parallelism
• Basic idea: split layers across multiple GPUs

An example of Pipeline parallelism for a model with 16 layers distributed across 4 GPUs. The numbers correspond to the layer IDs.

Key challenge: reducing time lost due to the “bubble” (grey)



One-forward one-backward
• Start performing backward pass as soon as possible

Numbers: microbatch



One-forward one-backward

Small # of microbatches: 
inefficient due to bubble

Better scaling with 
a larger # of microbatches



Scaling training

• Parallelism 

• Data parallelism 

• Tensor parallelism 

• Pipeline parallelism 

• Memory optimization

• Choosing strategies



Memory optimization: ZeRO
• In standard Data Parallelism, each GPU replicates: 

• Model parameters 

• Gradients 

• Optimizer states 

• Zero Redundancy Optimizer (ZeRO) partitions 
these across GPUs



Memory optimization: ZeRO

Memory

🚨  High

Shard

Nothing

Optimizer 
States

+Gradients

+Parameters

Communication

🚨  High

Low

Low

(All-Gathers)



Memory optimization: ZeRO
• Key idea: load parameters just-in-time. Example: 

• Model: 1B parameters  

• 4 GPUs, each storing 250M parameters 

• At each layer : 

• GPU uses all-gather to fetch parameters for layer , 
computes activations 

• Free fetched parameter memory and continue to next layer 

• Different than TP / PP! Only memory sharding, not sharding the 
computation

ℓ

ℓ



Recap of strategies
Key Idea Tradeoffs Use Case

Data Parallelism 
(DP)

Parallelize on batch 
dimension

Redundancy. Need 
to fit model on GPU.

Standard models 
that fit in GPU 

memory

Tensor 
Parallelism 

(TP)
Parallelize on 

hidden dimension
Fine-grained =>  

high communication 
costs.

Large layers (e.g. 
MLP). Parallelize 

within a node.

Pipeline 
Parallelism 

(PP)
Parallelize on model 

dimension Pipeline bubbles
Large deep models. 

Parallelize across 
nodes.

ZeRO
Sharding model, 

optimizer, gradients 
in DP

High 
communication 

costs (all-gather)

Big models that 
don’t fit in GPU 

memory

Often combined for efficient training (next)!



Scaling training

• Parallelism 

• Data parallelism 

• Tensor parallelism 

• Pipeline parallelism 

• Memory optimization 

• Choosing strategies



Choosing strategies

• Fit model into memory 

• Satisfy target global batch size 

• Optimize training throughput



Best configuration experiment

GBS 1M tokens, sequence length 4096, 1-64 8xH100 nodes



Scaling training

• Parallelism 

• Data parallelism 

• Tensor parallelism 

• Pipeline parallelism 

• Memory optimization 

• Choosing strategies


