CSCI 5541: Natural Language Processing

Lecture 13: Instructing and augmenting LLMs

Slides are made by Zae Myung Kim (https://zaemyung.github.io/)

Announcements

Proposal Reports in (please review our comments in slack)

□ Midterm Office Hour reminder (Apr 8)

 \Box HW4 \rightarrow Due this Thursday (Mar 27)

Agenda

- □ Instruction Tuning
- Augmented Language Models
- Reasoning
- Using Tools and Act
- Evaluation

Instruction Tuning

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.

Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

Language models are not aligned with user intent [Ouyang et al., 2022].

PROMPT Explain the moon landing to a 6 year old in a few sentences.

COMPLETION Human

A giant rocket ship blasted off from Earth carrying astronauts to the moon. The astronauts landed their spaceship on the moon and walked around exploring the lunar surface. Then they returned safely back to Earth, bringing home moon rocks to show everyone.

Language models are not aligned with user intent [Ouyang et al., 2022]. \rightarrow We can *finetune* it with responses we want!

Recap on pretrain-finetune paradigm

Pretraining can greatly improve performances on downstream NLP tasks by serving as parameter initialization.

Step 2: Finetune (on your task) Not many labels; adapt to the task!

Source: cs224n, Stanford

Scaling up finetuning

Pretraining can greatly improve performances on downstream NLP tasks by serving as parameter initialization.

Source: cs224n, Stanford

How does prompting fit into this paradigm?

Please label the sentiment towards the movie of the given movie review. The sentiment label should be "positive" or "negative". Text: i'll bet the video game is a lot more fun than the film. Sentiment:

For example to produce education materials for kids,

Describe what is quantum physics to a 6-year-old.

And safe content,

... in language that is safe for work.

Instruction finetuning

Collect examples of ((instruction, input), output) pairs across many tasks and finetune an LM and evaluate on unseen tasks

CSCI 5541 NLP

[FLAN-T5; Chung et al., 2022

Instruction finetuning vs. standard finetuning

□ The main difference lies in the data that the model is trained on

- Standard supervised finetuning trains models on *input examples* and their *corresponding outputs*.
- Instruction finetuning augments *input-output examples* with *instructions*, which enables instruction-tuned models to generalize more easily to new tasks.

Wei et al., 2022

Instruction finetuning (Early Example)

- 62 NLP datasets
- 12 "task clusters"

[FLAN-T5; Chung et al., 2022]

Instruction finetuning templates

Natural instruction templates for each task

Premise

Russian cosmonaut Valery Polyakov set the record for the longest continuous amount of time spent in space, a staggering 438 days, between 1994 and 1995.

Hypothesis

Russians hold the record for the longest stay in space.

Target

Entailment Not entailment

Template 1

<premise>

Based on the paragraph above, can we conclude that <hypothesis>?

<options>

Instruction finetuning templates

Natural instruction templates for each task

Premise	Template 1	Template 3
Russian cosmonaut Valery Polyakov set the record for the longest continuous amount of time spent in space, a staggering 438 days, between 1994 and 1995. Hypothesis Russians hold the record for the longest stay in space. Target Entailment Not entailment	<premise> Based on the paragraph above, can we conclude th <hypothesis>? <options> Template 2 <premise> Can we infer the following? <hypothesis> <options></options></hypothesis></premise></options></hypothesis></premise>	At Read the following and determine if the hypothesis can be inferred from the premise: Premise: <premise></premise> Hypothesis: <hypothesis></hypothesis> <options></options>

Instruction pretraining?

Scaling up data and model improves performance.

SuperNaturalInstructions dataset contains **over 1.6K tasks, 3M+ examples**

[Wang et al., 2022]

Or less is more?

"LIMA – Less Is More for Alignment" (Zhou et al. 2023)

Authors report that LLaMa 65B model finetuned on a collection of high quality and diverse 1,000 samples are enough to beat models trained on much larger instruction datasets.

Source	#Examples	Avg Input Len.	Avg Output Len.
Training			
Stack Exchange (STEM)	200	117	523
Stack Exchange (Other)	200	119	530
wikiHow	200	12	1,811
Pushshift r/WritingPrompts	150	34	274
Natural Instructions	50	236	92
Paper Authors (Group A)	200	40	334
Dev			
Paper Authors (Group A)	50	36	N/A
Test			
Pushshift r/AskReddit	70	30	N/A
Paper Authors (Group B)	230	31	N/A

Table 1: Sources of training prompts (inputs) and responses (outputs), and test prompts. The total amount of training data is roughly 750,000 tokens, split over exactly 1,000 sequences.

Figure 1: Human preference evaluation, comparing LIMA to 5 different baselines across 300 test prompts.

Figure 2: Preference evaluation using GPT-4 as the annotator, given the same instructions provided to humans.

General-purpose (left) vs Task-specific (right) Instruction Tuning

Densifying the task distribution to strictly instructions within the text revision domain can largely improve model performance for revision tasks over scaling model size with general instructions

User-driven Revision (CoEdIT)

Conversational Text Editing via Instruction Tuning

Edit Intention	Verbalizers
/ Task	

GEC

Fix grammar, Fix grammar in this sentence, Fix grammar in the sentence, Fix grammar errors, Fix grammatical errors, Fix grammaticality, Fix all grammatical errors, Fix grammatical errors in this sentence, Fix grammat errors in this sentence, Fix grammatical mistakes in this sentence, Fix grammaticality of the sentence, Fix disfluencies in the sentence, Make the sentence grammatical, Make the sentence fluent, Fix errors in this text, Update to remove grammat errors, Remove all grammatical errors from this text, Improve the grammaticality of this sentence, Grammaticality of this sentence, Fix grammaticality of this sentence, Fix grammaticality of this sentence, Fix disfluencies in the sentence, Make the sentence grammatical errors, Remove all grammatical errors from this text, Improve the grammaticality of this sentence, Grammaticality, Improve the grammaticality of this text, Remove grammatical mistakes, Fix the grammatical mistakes, Fix grammatical mistakes, Fix the grammatical mis

GEC				
Fix the grammar. When I grow up, I start to understand what he said is quite right.				When I grew up, I started
Simplification				said was quite right.
Rewrite to make this easier to understand: A storm surge is what forecasters consider a hurricane's most treacherous aspect.				A storm surge is considered a hurricane's most dangerous aspect.
Coherence	V		1/	
Make this text coherent: Their flight is weak. They run quickly through the tree canopy.	}	Pre-trained Instruction-tuned	K	Their flight is weak, but they run quickly through the tree canopy.
Formality				I love that song and I am
Write this more formally: omg i love that song im listening to it right now	γ			moment.

Edit Intention	V atasets	Size	Example Input	Example Output
FLUENCY	NUCLE-14 Lang-8 BEA-19	20k	<i>Fix the grammar:</i> When I grow up, I start to understand what he said is quite right.	When I grew up, I started to un- derstand what he said was quite right.
COHERENCE	DiscoFuse	11k	Make this text coherent: Their flight is weak. They run quickly through the tree canopy.	Their flight is weak, but they run quickly through the tree canopy.
CLARITY (Simplification)	NEWSELA WikiLarge WikiAuto ParabankV2 ITERATER-CLARITY	13k	<i>Rewrite to make this easier to under- stand:</i> A storm surge is what fore- casters consider a hurricane's most treacherous aspect.	A storm surge is considered a hur- ricane's most dangerous aspect.
STYLE (Paraphrase)	ParabankV2	15k	Paraphrase this: Do you know where I was born?	Do you know my birthplace?
STYLE (Formalize)	GYAFC	12k	Write this more formally: omg i love that song im listening to it right now	I love that song and I am listening to it at this moment.
STYLE (Neutralize)	WNC	11k	<i>Write in a more neutral way:</i> The authors' exposé on nutrition studies.	The authors' statements on nutri- tion studies.

Table 1: Example data instances in the COEDIT dataset (82K <instruction: source, target> pairs) Instructional prompts in the inputs are *italicized*.

Quantitative Evaluations of Text Revision Models

CoEdIT's task specific instruction tuning largely outperforms most generally instruction-tuned models

Overall, CoEdIT generates better text edits than models that are even 60x larger

[Raheja et al., EMNLP Findings 23]

CoEdit on HuggingFace

Model	Number of parameters
CoEdIT-large	770M
CoEdIT-xl	3B
CoEdIT-xxl	11B

https://huggingface.co/grammarly/coedit-large

Downloads last month 29,703

from transformers import AutoTokenizer,
T5ForConditionalGeneration

```
tokenizer =
AutoTokenizer.from pretrained("grammarly/coedit-large")
model =
T5ForConditionalGeneration.from pretrained("grammarly/coe
dit-large")
input text = 'Fix grammatical errors in this sentence:
When I grow up, I start to understand what he said is
quite right.'
input ids = tokenizer(input text,
return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=256)
edited_text = tokenizer.decode(outputs[0],
skip_special_tokens=True)
```

[Raheja et al., EMNLP Findings 23]

Augmented Language Models:

From Base to Instruct/Chat Models

Weakness of LLMs

□ Pre-trained LLMs struggle at completing tasks that require:

- Latest knowledge after the model pretraining time cutoff or
- Knowledge with internal/private knowledge base
- Symbolic or other deterministic execution capabilities

□ These issues stem from their fundamental limitations:

- They are trained to perform statistical modeling given a single parametric model and a limited context
- Their main objective function, *the next token prediction task*, does not cater for explicit symbolic capabilities

Augmented Language Models

Recent trend is to move slightly away from the purely statistical language modeling and *integrate external components*

- So that a *more relevant context* is produced at the cost of more computation
- Resulting in non-parametric models

An augmentation can be viewed in three dimensions: [Mialon et al. 2023]

- **Reasoning**: breaking up a complex task into smaller subtasks
- **Tool**: external modules that can be called
- Act: Calling of a tool to have an effect

Augmented Language Models

Augmented Language Models

[Zhang et al. 2023]

Reasoning

Reasoning

Reasoning is the ability to make inferences using evidence and logic.

- o Commonsense, mathematical, symbolic, etc.
- Often this involves deductions from inference chains, i.e. "multi-step reasoning"
- Main challenge is to break down a complex problem into smaller subproblems and generate the solution by composing the (correctly predicted) answers to the subproblems.
- Eliciting reasoning in LLMs
 - Eliciting reasoning with prompting
 - Divide and concur with recursive prompting
 - Teaching LLMs to reason

Essentially methods can be categorized as either zero-shot or few-shot

Zero-shot prompting

- o "Let's think step by step." [Kojima et al. 2022]
- o "Chain-of-thought decoding" [Wang and Zhou 2024]

Figure 1 | **Illustration of CoT-decoding**. Pre-trained LLMs are capable of inherent reasoning without prompting by considering alternative top-k tokens, rather than solely relying on the top-1 greedy decoding path. Moreover, these models tend to display higher confidence in decoding the final answer (indicated by a darker shaded color) when a CoT reasoning path is present.

□ Few-shot prompting – variants of CoT prompting

CSCI 5541 NLP

□ Few-shot prompting – via "programming"

• ReAct prompting [Yao et al. 2022]

https://www.width.ai/post/react-prompting

Few-shot prompting – via "programming"

• ReAct prompting [Yao et al. 2022]

(Id) REACT (Reason + ACT)
Thought 1: I need to search Apple Remote and find the program it was originally designed to interact with.
Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple prigipally designed to control the
Example 2005 by Apple Originarry designed to control the
Front Row media center program
<pre>Thought 2: Apple Remote was originally designed to control the Front Row media center program. I need to search Front Row next and find what other device can control it. Act 2: Search[Front Row] Obs 2: Could not find [Front Row]. Similar: ['Front Row Seat to Earth', 'Front Row Motorsports',' Front Row (software) ',]</pre>
Thought 3: Front Row is not found. I need to search Front
Row (software) .
Act 3: Search[Front Row (software)]
Obs 3: Front Row is a discontinued media center software
Thought 4: Front Row (software) is controlled by an Apple
Remote or the keyboard function keys. So the answer is
keyboard function keys.
Act 4: Finish[keyboard function keys]

Figure 1: ART generates automatic multi-step decompositions for new tasks by selecting decompositions of related tasks in the *task libray* (A) and selecting and using tools in the *tool library* alongside LLM generation (B). Humans can optionally edit decompositions (eg. correcting and editing code) to improve performance (C).

ART (Automatic multi-step reasoning and tool-use for large language models; <u>Paranjape et al. 2023</u>):

- ART automatically creates decompositions (multistep reasoning) for examples of new tasks.
- ART retrieves comparable task instances from a library, enabling quick task analysis and tool application.
- Using a structured query language, it facilitates reading intermediate stages, pausing for external tool use, and restarting after tool output integration.
 - At each step, the framework selects and utilizes the most appropriate tools.

New Task (Physics QA) Answer this high-school physics question **Input:** Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizontal. Determine the horizontal components of the tension force.

and ended on January 20, 1993.

Q2: [search] When was the Gulf War fought? #2: The Gulf War was a 1990-1991

Q3: [subquestion] Could these entities have co-existed? #3: Yes. Their time

periods intersect.

Q4: [generate output] Is this an anachronism? #4: No Q5: [EOQ] Ans: No

Figure 2: A run-through of ART on a new task, Physics QA. (A) Programs of related tasks like anachronisms and Math QA provide few-shot supervision to the LLM — related sub-steps and tools in these programs can be used by the LLM for cross-task generalization (shown in purple). (B) Tool use: Search is used to find the appropriate physics formula, and code generation and execution are used to substitute given values and compute the answer (shown in orange).

New Task (Physics QA) Answer this high-school physics question Input: Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizontal. Determine the horizontal components of the tension force. Code CoT-style String Google **TOOL LIBRARY** Search Arithmetic operations operations reasoning TASK LIBRARY put: Hector yanks on the chain with a 72.0 N force at an angle of 35.0° above the horizor/tal. stermine the horizontal components of the tension force. Solve these arithmetic problems using python code I: [search] What is the formula for the horizontal component of the tension force? Input: Viola had 167 breads. Nancy took 137 from him. How : The formula for the horizontal component of the tension force is Tcos0. The horizontal many does Viola have now? mponent (Fx) can be calculated as Ftens*cosine(θ) where θ is the angle which the force make Q1: [generate code] Write down arithmetic as python code with the horizontal in radians. #1: viola bought = 167, nancy took = 137 ans = viola bought - nancy took Input: ... Q1: [search] ... LLM Q2: [code execute] Execute snippet #2: 30 Q3: [EOQ] Ans: No #1: ... can be calculated as Ftens*cosine(θ)where θ is ... Q2: [generate code] Use the formula Fx = Ftens*cosine(θ) to solve: Hank ... Does the sentence contain an anachromism? Yes/No. #2:T = 72.0, theta = 35.0 Input: President George H. W. Bush called his generals at the outset of the OpenAI Codex radians= math.pi*theta/180 < Gulf War. Fx = T*math.cos(radians) Q1: [search] When was President George H. W. Bush, president? #1: George H. W. Bush's tenure started on January 20, 1989. Input: ...Q1: [search] ...#1: ... and ended on January 20, 1993. Q2: [generate code] Use the formula $Fx = Ftens^*cosine(\theta)$ to solve: Hank ... Q2: [search] When was the Gulf War fought? #2: The Gulf War was a 1990-1991 #2: ... Fx = T*math.cos(radians) Q3: [subguestion] Could these entities have co-existed? #3: Yes. Their time Q3: [code execute] Execute the python code and get the value of "Fx" periods intersect. #3: 58.9789 🔁 python Q4: [generate output] Is this an anachronism? #4: No Q5: [EOQ] Ans: No Q4: [EOQ] Ans: 58.9789

Figure 2: A run-through of ART on a new task, Physics QA. (A) Programs of related tasks like anachronisms and Math QA provide few-shot supervision to the LLM — related sub-steps and tools in these programs can be used by the LLM for cross-task generalization (shown in purple). (B) Tool use: Search is used to find the appropriate physics formula, and code generation and execution are used to substitute given values and compute the answer (shown in orange).

Task Name (Cluster)	Few Shot	AutoCot	ART w/o Tool Use	ART	GPT-3 Best
	Test Tas	iks			
Sentence Ambiguity (Search)	70.675	51.47	71.00	73.33	-
Strategy QA (Search)	55.495	27.22	59.37	66.44	
Physics (Search)	70.095	61.83	59.13	67.55	
Δ with ART (Search)	+3.7	+22.27	+ 5.9		
Physics Questions (Arithmetic)	7.025	5.56	6.30	20.37	1
Operators (Arithmetic)	71.237	75.52	71.80	92.00	
Unit interpretation (Arithmetic)	58.27	41.20	51.4	53.99	
Repeat copy logic (Arithmetic)	50.017	15.63	31.25	44.38	
Object Counting (Arithmetic)	39.27	26.80	42.2	87.00	81.20 ¹
Penguins in a table (Arithmetic)	58.237	40.40	68.86	77.85	72.341
Reasoning about objects (Arithmetic)	71.007	33.33	45.35	64.34	52.691
Tracking shuffled objects (Arithmetic)	22.397	19.44	18.14	37.67	36.32 ¹
Δ with ART (Arithmetic)	+19.0	+36.7	+ 23.1		+6.1
Word Unscramble (String)	40.727	32.44	23.03	42.7	
Simple Text Editing (Code)	35.315	30.21	20.74	27.65	
CS Algorithms (Code)	73.487	0.0	41.59	88.11	
Sports Understanding (CoT)	69.74 ⁵	51.47	92.89		86.59 ¹
Snarks (CoT)	54.58 ⁵	57.24	57.13		65.2 ¹
Disambiguation QA (Free-form)	55.03 ⁵	48.45	55.89		60.62 ¹
Temporal sequences (CoT)	55.807	19.70	49.5	÷2	81.8 ¹
Ruin names (CoT)	71.015	55.28	60.22		
Δ with ART (Misc)	2.4	22.5	24.37		-9.4
Δ with ART (Overall)	+6.9	+24.6	+16.7		-1.7
	MML	U			
College Computer Science (Search)	41.00	43.99	63.40	67.80	63.66
Astronomy (Search)	62.10	41.48	76.71	79.1	62.56
Business Ethics (Search)	61.60	48.8	77.17	81.16	72.76
Virology (Search)	50.03	49.52	71.60	71.49	50.72 ⁶
Geography (Search)	77.67	57.07	70.30	71.71	81.86
Mathematics (Arithmetic)	36.67	33.77	39.50	45.66	34.56
Δ with ART (MMLU)	+14.6	+23.7	+3.0		+8.5

Table 3: ART performance on BigBench tasks and MMLU tasks. (¹ Human-crafted CoT (Wei et al., 2022; Suzgun et al., 2022), ⁵ InstructGPT (Ouyang et al., 2022), ⁶ Scaled instruction finetuning (Chung et al., 2022), ⁷ Code-davinci-002 (Chen et al., 2021)).

Using Tools and Act

Tools and Act

Expanding LLMs' capabilities to access and leverage external knowledge and computational resources beyond what is stored in their own weights.

□ This integration, via special tokens, allows LLMs to perform tasks like:

- Exact computation
- Symbolic reasoning
- Information retrieval, etc.
- □ Tools can range from:
 - Calling (another) LLM or other programs like Python interpreter
 - Querying (vector) databases, knowledge graphs, or search engines
 - Often referred to as "information retrieval"

Tools and Act

Use Google Search for document retrieval to augment LLMs. [Lazaridou et al. 2022]

- Given a question, clean text (paragraph) is extracted out of 20 URLs returned by Google.
- Paragraphs are ranked by TF-IDF based cosine similarity between evidence paragraphs and the query.
- Only the most relevant paragraph is used in the prompt to produce an answer

Augmenting LLMs with Retrieval

Augmenting LLMs with Retrieval

"Internal retrieval" from LLMs could be also beneficial

o Generate knowledge about a topic before answering the question [Liu et al. 2022]

Generate some knowledge about the input. Examples:

Input: What type of water formation is formed by clouds? Knowledge: Clouds are made of water vapor.

Input: {question}
Knowledge:

Augmenting LLMs with Retrieval

- "Internal retrieval" from LLMs could be also beneficial
 - Iterative prompting of LLM for text refinement task [Schick et al. 2022]
 - The "plan" can come from human users too.

Iteration 0

Plan: Remove incorrect information

Edit: Brittney Reese (born September 9, 1986 in Gulfport, Mississippi) is an American long jumper. $<\!\!/{\rm LM}\!>$

Iteration 1

Text: Brittney Reese (born September 9, 1986) is an American long jumper. <LM>
Plan: Add information about her career
Edit: Brittney Reese (born September 9, 1986) is an American long
jumper, who competed at the 2008 Summer Olympics, and is a 4-time World Champion.
</LM>

Iteration 2

Text: Brittney Reese (born September 9, 1986) is an American long jumper, who competed at the 2008 Summer Olympics, and is a 4-time World Champion.

<LM>

Plan: Add her birthplace

Edit: Brittney Reese (born September 9, 1986 in Inglewood, California) is an American long jumper, who competed at the 2008 Summer Olympics, and is a 4-time World Champion. </kl>

Figure 5: Iterative prompting example using PEER (Schick et al., 2022), a LM trained to produce a plan of action and edit to the input text at each step. This process can be repeated until the generated text requires no further updates. <LM> denotes the start of the LM's output to the prompt, while </LM> denotes the end.

Augmenting LLMs with Programming Language

Ask LLM to generate programming language statements to resolve natural language reasoning problems, hence offloading the solution step to a runtime such as a Python interpreter.

> Question: In Fibonacci sequence, it follows the rule that each number is equal to the sum of the preceding two numbers. Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence?

PAL (Program-aided language models); Gao et al. 2022 and PoT (Program of Thoughts prompting); Chen et al. 2022

Augmenting LLMs with External APIs

- TALM (Tool Augmented Language Models; Parisi et al. 2022): LM augmented with textto-text API calls.
 - LM is guided to generate tool-call and tool input text conditioned on task input text to construct API call requests
 - When **result** shows up, the specified tool API is called and the returned result gets appended to the text sequence as **output** token.

An abstract task:

task input text |*tool-call* tool input text |*result* tool output text |*output* task output text

A weather task:

how hot will it get in NYC today? |*weather* lookup region=NYC |*result* precipitation chance: 10, high temp: 20c, low-temp: 12c |*output* today's high will be 20C

Augmenting LLMs with External APIs

- **Toolformer** (Schick et al. 2023) use external tools via simple APIs, which is built in a *self-supervised manner* and only requires a handful of demonstrations for each API.
 - **Calculator** to help LM with the lack of precise math skills;
 - **Q&A** system to help with unfaithful content and hallucination;
 - **Search engine** to provide up-to-date information after pretraining cut off time;
 - **Translation system** to improve performance on low resource language;
 - **Calendar** to make LM be aware of time progression.

Toolformer Training

Step 1:

Prompting to annotate potential API calls.

Ask a pre-trained LM to annotate a dataset via few-shot learning with API call usage examples.

The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") \rightarrow Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) \rightarrow 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.

The Brown Act is California's law [WikiSearch("Brown Act") \rightarrow The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Toolformer Training

Step 2:

Filter annotations based on whether API calls help predict future tokens.

Use a self-supervised loss to decide which API calls are actually helpful.

3 Filter API Calls $L_i(C_i^1 \rightarrow \text{Steel City})$ $< \min(L_i(C_i^1 \to \varepsilon), L_i(\varepsilon))$ $L_i(C_i^2 \rightarrow \text{United States})$ > min($L_i(C_i^2 \rightarrow \varepsilon), L_i(\varepsilon)$)

$$L_i^+ = L_i(e(c_i,r_i)) \ L_i^- = \min(L_i(arepsilon),L_i(e(c_i,arepsilon)))$$

Toolformer Training

Step 3:

Fine-tune LM on this annotated dataset.

The training data is a combination of the original dataset and its augmented version.

LM Dataset with API Calls

x* = Pittsburgh is also known as [QA(What ...? → Steel City)] the Steel City.

Concluding Remarks

On alignment

- Training LLMs on various tasks enhances their ability to execute instructions for new tasks.
- Instruction-tuned LLMs exhibits better zero-shot and few-shot capability.
- The number of instruction tuning clusters and the scale of the model are important to the performance of LLMs.
- Many new benchmarks have been developed to test the models capability as well as to alert their pitfalls.

On augmentation

- The emergence of reasoning abilities in LLMs facilitates the incorporation of various tools and knowledge bases, thereby greatly enhancing their overall capability.
- Deciding which tools to use and what relevant external knowledge to integrate is the key.
- As tasks get more complex, LLMs' long-term planning capability is put to test.

