CSCI 5541: Natural Language Processing

Lecture 14: All about Data & Annotation

Outline

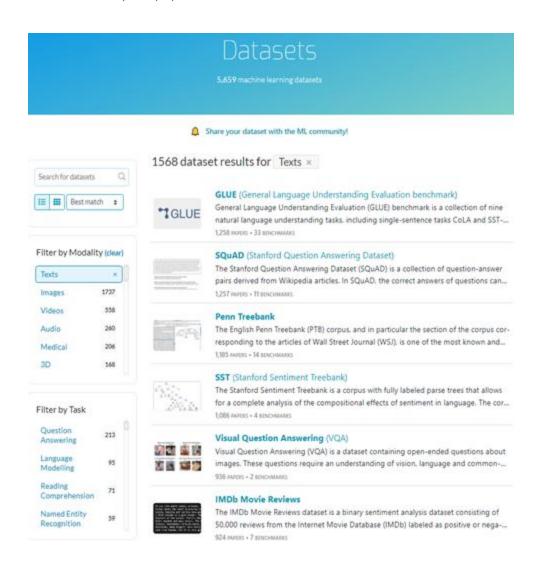
- Annotation terms, examples, and process
- Qualitative coding
- □ Recruiting annotators (coders)
- ☐ Annotation quality assessment
- Annotation tools
- ☐ Issues in annotation
- Advanced annotation techniques
- ☐ LLMs as Annotators and Synthetic Data

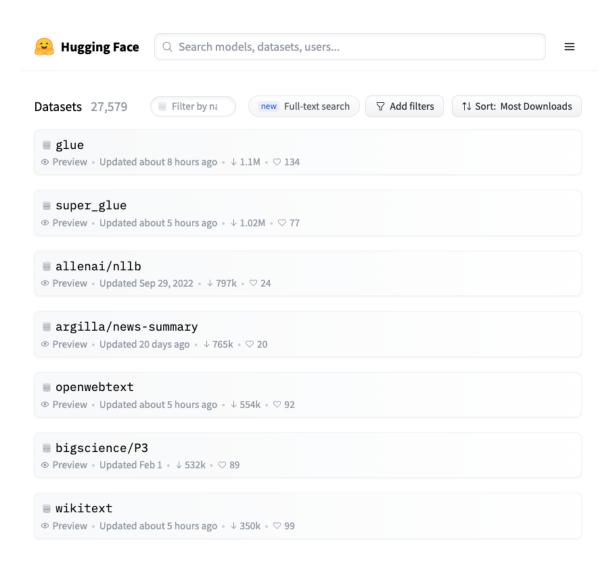
Annotation

- Despite the emergent ability of LLMs, fine-tuned models trained on annotated dataset can still show improved performance.
- ☐ High-quality data means high-performance algorithms
- ☐ Just providing large amounts of data doesn't help the model understand and learn to speak. The data needs to be guided in such a way that the computer can more easily find patterns and inferences.
- Any metadata (e.g., tags, structures, categories, orders) used to mark up elements of the dataset is called annotation.
- ☐ But, in order for the algorithms to learn efficiently and effectively, the annotation must be accurate, and relevant to the task the machine is being asked to perform.

https://paperswithcode.com/datasets

https://huggingface.co/datasets?sort=downloads





https://paperswithcode.com/datasets Current benchmark datasets are skewed to high-resource languages Filter by Language English 828 122 Chinese 500 German French 100 Spanish 50 Russian 10 Gothic Kalmyk Kom

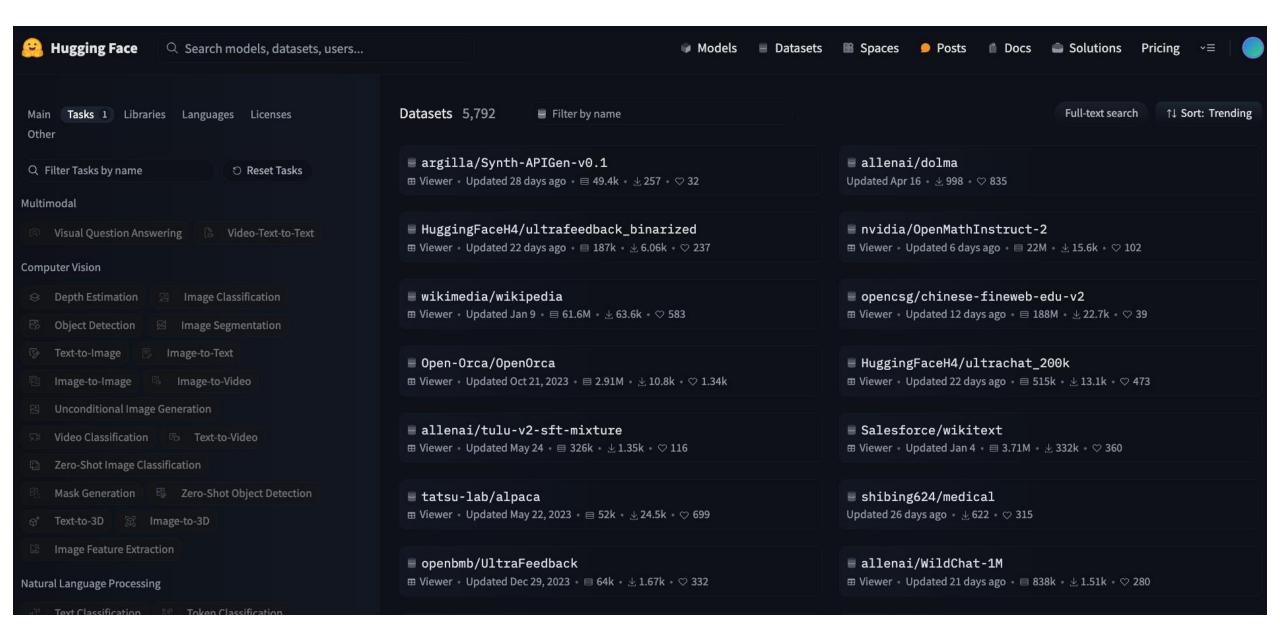
South

91

69

62

58



Stage 1

Stage 1 is the biggest stage, where we train on 4T or 5T tokens on largely web-based data.

		OLMo2 7B	OLMo2 13B	
	Number of tokens	4 Trillion	5 Trillion	
	Checkpoint	stage1-step928646-tokens3896B	stage1-step596057-tokens5001B	
	Training config	OLMo2-7B-stage1.yaml	OLMo2-13B-stage1.yaml	
	WandB	wandb.ai/OLMo2-7B	wandb.ai/OLMo2-13B	

Stage 2 for the 7B

For the 7B model, we train three times with different data order on 50B high quality tokens, and then average ("soup") the models.

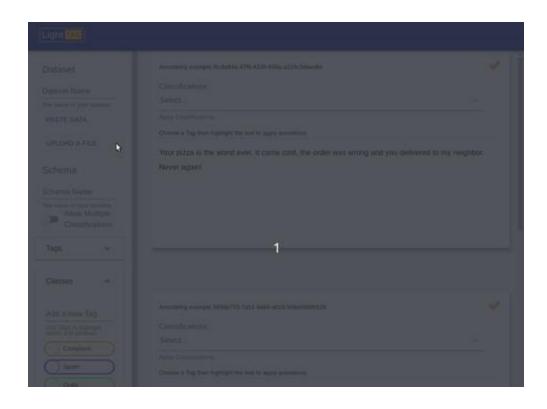
			Checkpoint	Training config	WandB
		random seed 42	stage2-ingredient1- step11931-tokens50B	OLMo2-7B-stage2-seed42.yaml	wandb.ai/OLMo2- 7B
MidTraining —————		random seed 42069	stage2-ingredient2- step11931-tokens50B	OLMo2-7B-stage2- seed42069.yaml	wandb.ai/OLMo2- 7B
		random seed 666	stage2-ingredient3- step11931-tokens50B	OLMo2-7B-stage2-seed666.yaml	wandb.ai/OLMo2- 7B
		final souped model	main	no config, we just averaged the weights in Python	

Pretraining

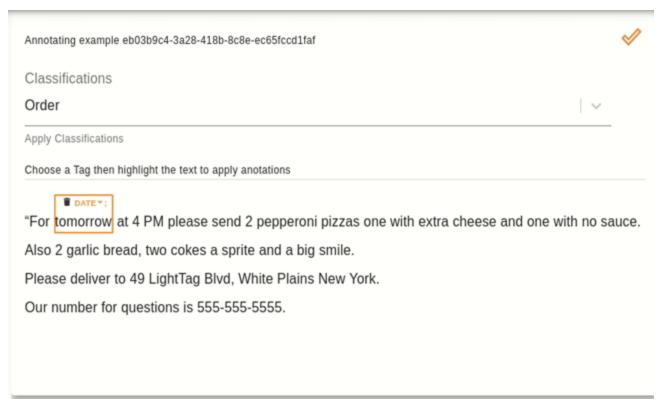
Terms

- ☐ Datasets of natural language are referred to as corpora
- ☐ A single set of data annotated with the same specification is called an annotated corpus.
- ☐ A dataset is a collection of examples that need to be annotated.
 - A class is a particular classification option.
 - ✓ E.g., Positive or Negative and email can be Spam or Ham.
 - A tag is a description name for an entity type.
 - ✓ E.g., Person (Jane), Country (Madagascar), Topping (Pepperoni) and Emotion (Fascinated).
 - A response to particular question or prompt
 - ✓ E.g., "the answer is 4"
- A schema
 - Everyone to use the same collection of tags and classes or
 - Pick and choose their own tags and classes.

Types of annotaations

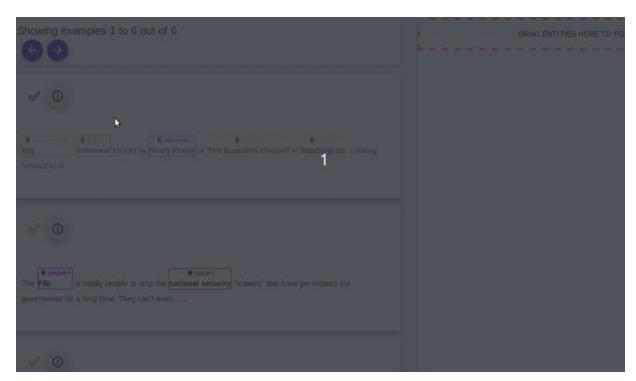


Document classification

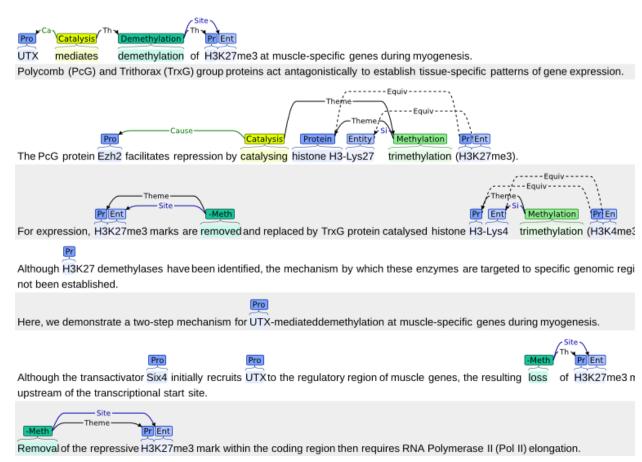


Entity annotation

Types of annotaations



Relation annotation



Discourse relation annotation

Types of annotaations

Premise

Russian cosmonaut Valery Polyakov set the record for the longest amount of time spent in space.

Hypothesis

Russians hold the record for the longest stay in space.

Target

Entailment Not entailment

Options:

- yes
- no

Template 1

Russian Cosmonaut Valery Polyakov set the record for the longest amount of time spent in space.

Based on the paragraph above, can we conclude that

Russians hold the record for the longest stay in space?

OPTIONS

- -yes
- -no

Template 2

Read the following and determine if the hypothesis can be inferred from the premise:

Premise:

Hypothesis: <hypothesis>

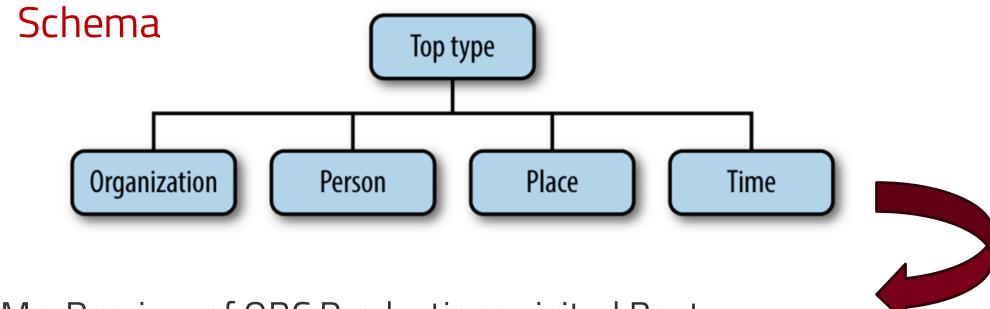
<options>

<u>Template 3, ...</u>

Questions for collecting the ideal dataset?

- ☐ What is the target accuracy you are looking for?
- ☐ Can it be achieved it by better models or more data?
 - How many annotations are enough to ensure high accuracies?
- ☐ How representative is your dataset?
 - o domain vocabulary, format, genre of the text, etc
- ☐ Is your dataset balanced, containing instances of each class?
- ☐ How clean is your dataset?

Examples on semantic types/role labeling



Ms. Ramirez of QBC Productions visited Boston on Saturday, where she had lunch with Mr. Harris of STU Enterprises at 1:15 pm.

Semantic Types

[Ms. Ramirez]_{Person} of [QBC Productions]_{Organization} visited [Boston]_{Place} on [Saturday]_{Time}, where she had lunch with [Mr. Harris]_{Person} of [STU Enterprises]_{Organization} at [1:15 pm]_{Time}.

Semantic Role Labeling

- Basics for Question Answering,
 - o the who, what, where, and when of a sentence.

Agent	The event participant that is doing or causing the event to occur		
Theme/figure	The event participant who undergoes a change in position or state		
Experiencer The event participant who experiences or perceives something			
Source The location or place from which the motion begins; the person from which theme is given			
Goal	The location or place to which the motion is directed or terminates		
Recipient The person who comes into possession of the theme			
Patient The event participant who is affected by the event			
Instrument The event participant used by the agent to do or cause the event			
Location/ground The location or place associated with the event itself			

16

The man painted the wall with a paint brush.

Mary walked to the café from her house.

John gave his mother a necklace.

My brother lives in Milwaukee.

[The man]_{agent} painted [the wall]_{patient} with [a paint brush]_{instrument}.

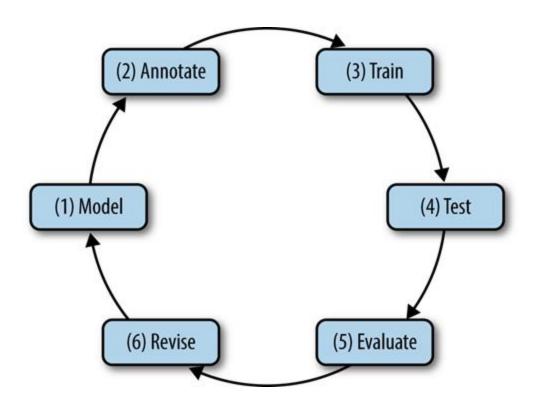
[Mary]_{figure} walked to [the cafe]_{goal} from [her house]_{source}.

[John]_{agent} gave [his mother]_{recipient} [a necklace]_{theme}.

[My brother]_{theme} lives in [Milwaukee]_{location}.

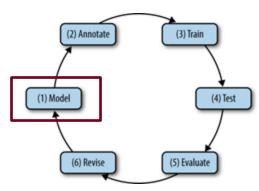
Annotation process

Annotation Development Cycle



MATTER methodology (Pustejovsky 2006)

Model the Phenomenon



A model, M, can be seen as a triple, $M = \langle T, R, I \rangle$.

- A vocabulary of terms, T,
- ☐ The relations between these terms, R,
- ☐ Their interpretation, I.

```
Terms = {Document_type, Spam, Not-Spam}

Relations = {Document_type ::= Spam | Not-Spam}

Interpretation = { Spam = "something we don't want!",

Not-Spam = "something we do want!"}
```

```
Terms = {Named_Entity, Organization, Person, Place, Time}

Relations = {Named_Entity ::= Organization | Person | Place | Time}

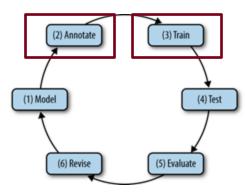
Interpretation = { Organization = "list of organizations in a database",

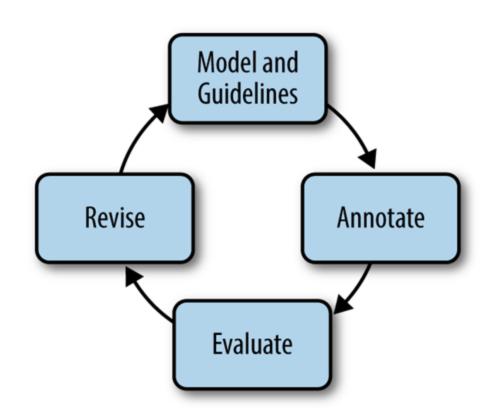
Person = "list of people in a database",

Place = "list of countries, geographic locations, etc.",

Time = "all possible dates on the calendar"}
```

Annotate with the Specification

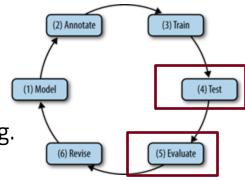




Given the specification document encoding the model phenomenon, now you will need to train human annotators to mark up the dataset according to the tags that are important to you.

MAMA (Model-Annotate-Model-Annotate) cycle, or the "babeling" phase of MATTER.

Consistency



the most problematic when comparing annotations: namely, the extent or the span of the tag.

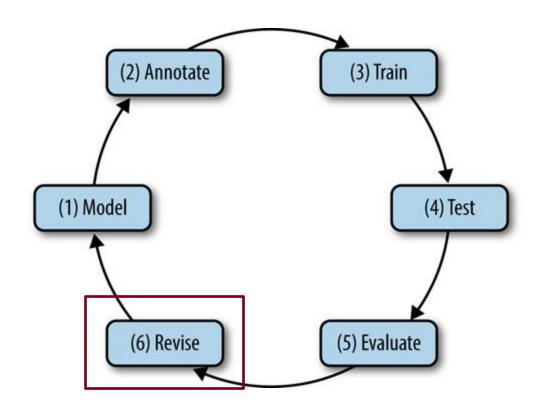
Organization

[QBC Productions]_{Organization} Inc. of East Anglia

[QBC Productions Inc.]_{Organization} of East Anglia

[QBC Productions Inc. of East Anglia]_{Organization}

Annotation Development Cycle

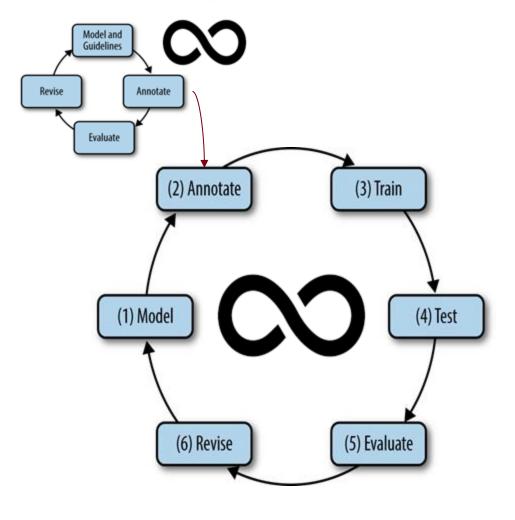


Revise

The model and the annotation specification are revisited in order to make the annotation more robust and reliable with use in the algorithm.

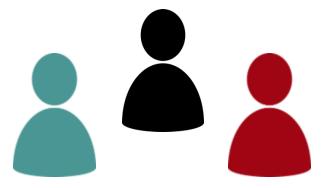
MATTER methodology (Pustejovsky 2006)

In Practice



- ☐ An iterative process until you reach to the target performance
- As model performance converges, you will face edge cases in the long tail. Analyzing the long-tail and updating the schema are painful and time-consuming, but most important in practice.
- ☐ There is no single magic deep learning solution in real-world tasks; If so, your task is relatively easy or narrowed down to a very specific scope

Recruiting annotators (coders)

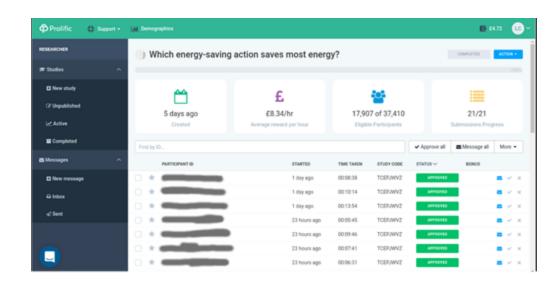


Outsourcing

- ☐ Finding capable annotators can be a tremendous headache.
- ☐ From testing, onboarding, and ensuring tax compliance to distributing, managing, and assessing the quality of projects, there's an enormous amount of hidden labor involved in annotating.

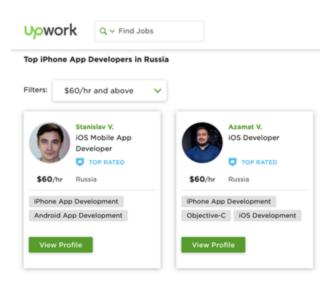
Amazon Mechanical Turk.

Best for finding people to help complete crowdsourced tasks



Prolific

Quickly find research participants you can trust.



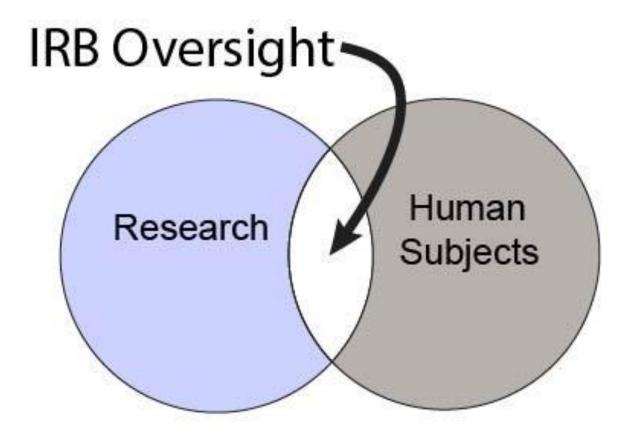
UpWork

Best for finding the right freelancers to complete tasks

Undergraduate students

30

An institutional review board (IRB) .. is a type of committee that applies research ethics by reviewing the methods proposed for research to ensure that they are ethical.



- Takes at least two months to get approval
- Before approval, you can't collect any human-subject data in your project

Annotation quality assessment

Correctness of annotations

Sentence	Coder 1	Coder 2	Agreement
We address the problem of recognition	I	Р	×
Our aim is torecognize [x] from [y].	P	Р	✓
[A] is set up as prior information, and its pose is determined by three parameters, which are [j,k and l].	М	M	✓
An efficient local gradient-based method is proposed to, which is combined into framework to estimate [V and W] by iterative evolution	Р	R	×
It is shown that the local gradient-based method can evaluate accurately and efficiently [V and W] .	R	R	✓

Observed agreement between coder 1 and 2: 60%

Inter-annotator agreement (IAA)

the probability that the raters could have agreed purely by chance.

□ Relative agreement is 60% in the previous example, but chance agreement is 20%. Agreement measures need to be corrected for change agreement (Carletta, 1996)

- ☐ Kappa coefficient (Cohen 1960)
 - 1 (agreement), 0 (no correlation), -1 (disagreement)

$$K = \frac{P(A) - P(E)}{1 - P(E)} = \frac{0.6 - 0.2}{1 - 0.2} = 0.5$$

Step 1: Calculate relative agreement (po) between raters.

Rater 2

		Yes	No
Rater 1	Yes	25	10
Natel I	No	15	20

$$p_o = (Both said Yes + Both said No) / (Total Ratings) = (25 + 20) / (70) = 0.6429$$

the probability that the raters could have agreed purely by chance.

Step 2: Calculate the hypothetical probability of chance agreement (p_e) between raters.

			Rater 2		
		Yes	No		
Rater 1	Yes	25	10		
nace i	No	15	20		

$$p_e = 0.285714 + 0.214285 = 0.5$$

the probability that the raters could have agreed purely by chance.

Step 2: Calculate the hypothetical probability of chance agreement (p_e) between raters.

		Rater 2			
		Yes	No		
Rater 1	Yes	25	10		
	No	15	20		

$$P("Yes") = ((25+10)/70) * ((25+15)/70) = 0.285714$$

 $P("No") = ((15+20)/70) * ((10+20)/70) = 0.214285$

$$p_e = 0.285714 + 0.214285 = 0.5$$

Step 3: Calculate Cohen's Kappa

Rater 2

	Yes	No
Yes	25	10
No	15	20

Rater 1

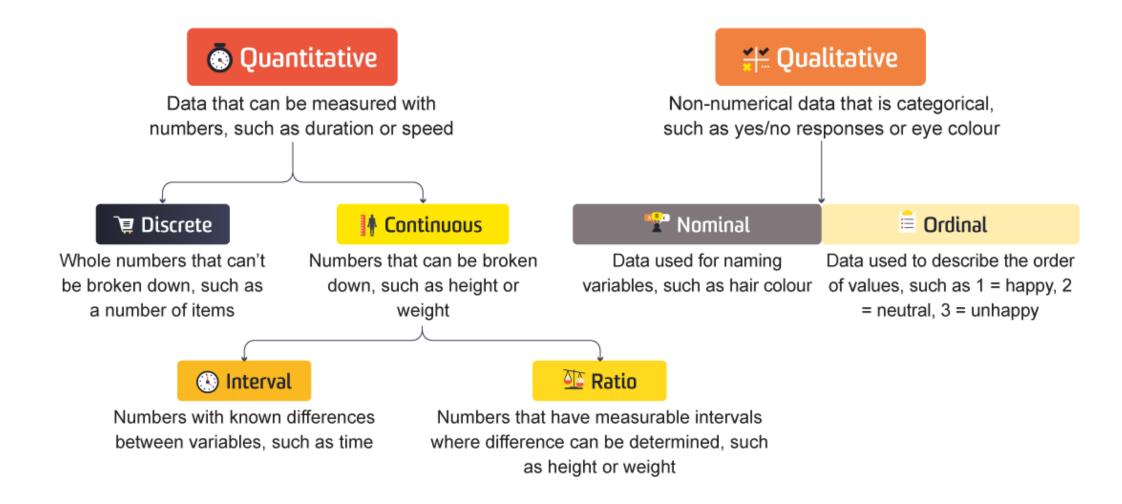
$$k = (p_o - p_e) / (1 - p_e)$$

= (0.6429 - 0.5) / (1 - 0.5)
= 0.2857

Interpretation of Cohen's Kappa

Value Range	Cohen's Interpretation	
Below 0.20	None to slight agreement	
.21–.39	Fair agreement	
.40–.59	Moderate agreement	
.60–.79	Substantial agreement	
.80–.90	Almost perfect agreement	
Above .90	Almost perfect agreement	

Types of Data



Other IAA measures by types and their interpretation

IRR	Data	Missing Data	Number of Raters	The effect of 'chance' in agreement is minimized?	General agreement on the significance of a numeric result?
Cohen's Kappa	Nominal	No	2	No *	No
Fleiss's Kappa	Nominal	No	2≥	No *	No
Krippendorff's Alpha	All Data	Yes	2≥	Yes	Yes **

^{**} Krippendorff's Alpha considers 0.823 as the cut point.

Landis and Koch (1977)

0.6-0.79 substantial;

0.8+ perfect

Krippendorff (1980)

0.67-0.79 tentative;

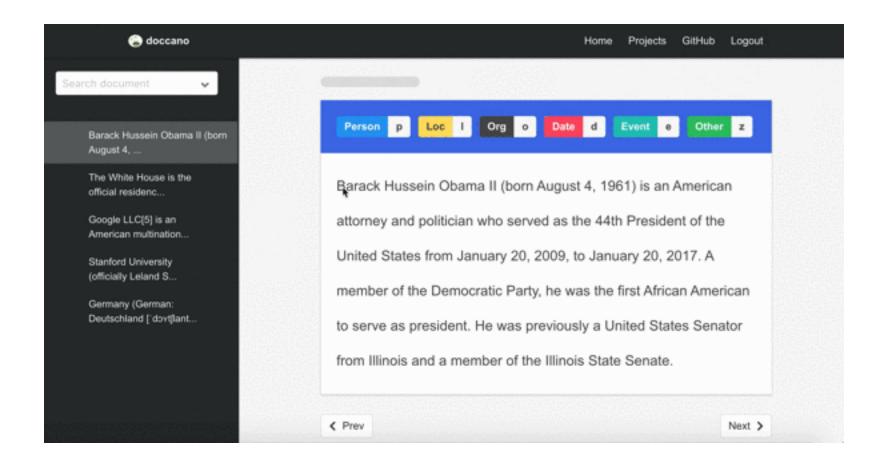
0.8+ good

Green (1997)

0.4-0.74 fair/good; 0.75 high

Annotation tools

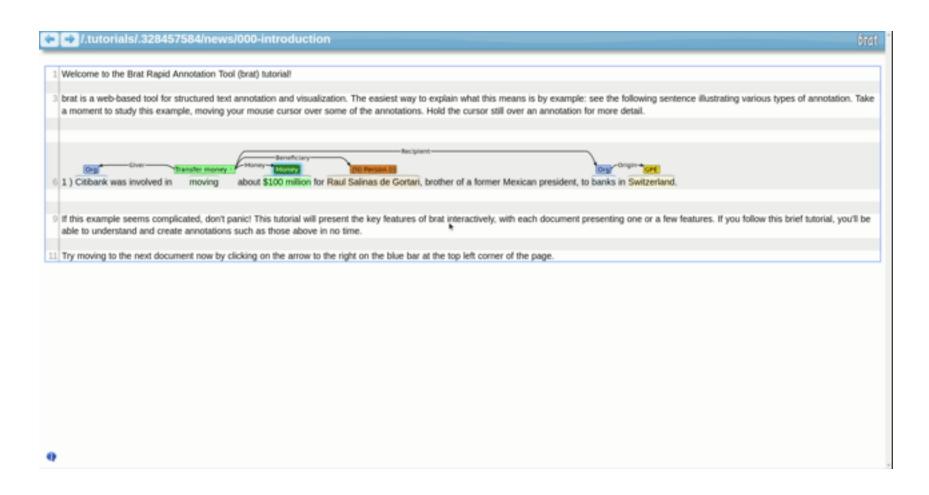
Doccano



Pros: Easy to use Support Teams Open Source

Cons: Fully manual annotation

Brat



Pros: Open source Free

Cons: Old-fashioned UI

Prodigy

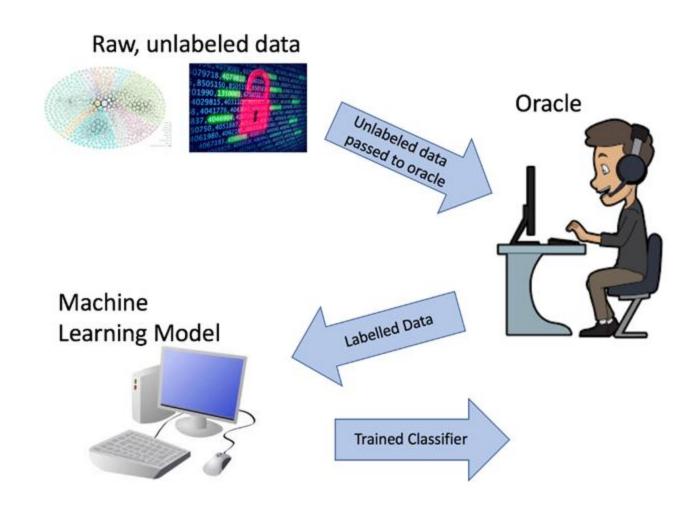
Radically efficient machine teaching. An annotation tool powered by active learning.

Pros: Automation Lots of features

Can train the models

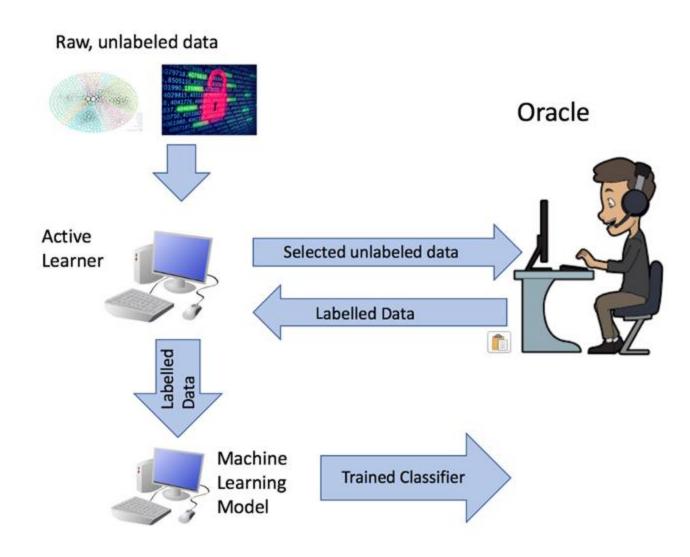
Cons: Learning Curve Not Open Source.

Passive learning



https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc

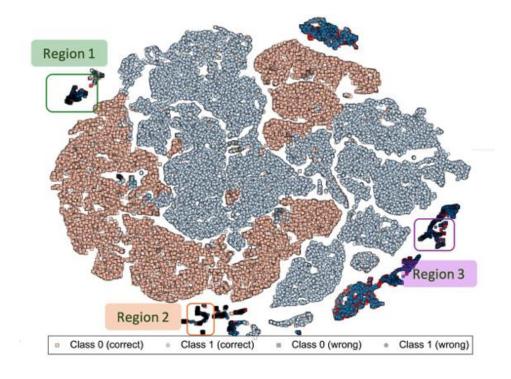
Active learning

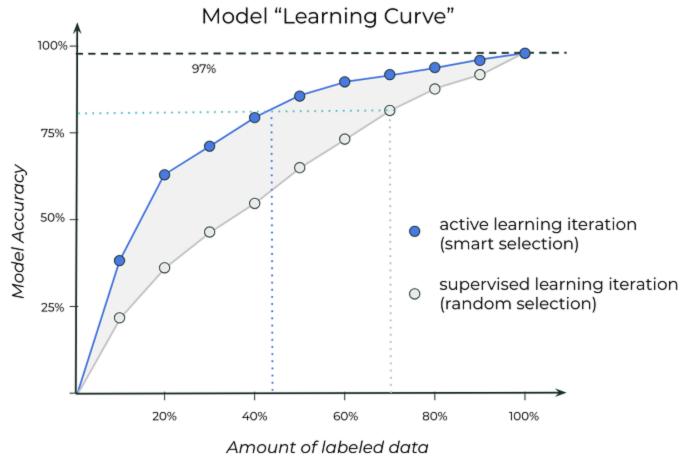


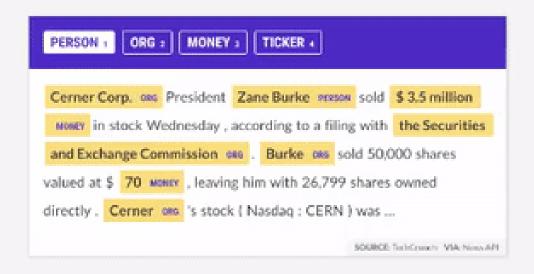
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc

Active learning

Using active learning gets to higher model accuracies with less labelled data







Human annotators correct the model-predicted pseudo labels

Active learning

Bruce PERSON Springsteen has sold the master recordings and publishing rights for his life's work to Sony for a reported \$500m (£376m). The deal gives Sony ownership of his 20 studio albums, including classics like Born To Run, The River and Born In The USA, according to multiple US reports. A 20-time Grammy winner, Springsteen's music generated about \$15m in revenue last year. His deal follows similar sales by Bob Dylan, Blondie and David PERSON Bowie. Warner Music bought the worldwide rights to Bowie's music in September, and Dylan sold his catalogue of more than 600 songs in December last year to Universal Music Group at a purchase price widely reported as \$300m.

SRL prediction before active learning

Bruce Springsteen PERSON has sold the master recordings and publishing rights for his life's work to Sony ORG for a reported \$500m (£376m). The deal gives Sony ORG ownership of his 20 studio albums, including classics like Born To Run, The River and Born In The USA LOCATION, according to multiple US reports. A 20-time Grammy winner, Springsteen PERSON 's music generated about \$15m in revenue last year. His deal follows similar sales by Bob PERSON Dylan PERSON, Blond PERSON is PERSON and David Bowie PERSON. Warner ORG Music ORG bought the worldwide rights to Bowie PERSON 's music in September, and Dylan PERSON sold his catalogue of more than 600 songs in December last year to Universal ORG Music ORG Group ORG at a purchase price widely reported as \$300m.

SRL prediction after active learning

Issues in annotation

Task 1: Classify between Order or Complaint?

Task 2: Annotate semantic types

I ordered a large chease pizza and a coke to Somehwere Blvd an hour ago! It still isn't here!!!! What gives ?! Can you call me with an update ? 555-556

Disagreement

Semantic interpretation

Jane reads this and thinks it's not an order because the customer says the order has already been placed.

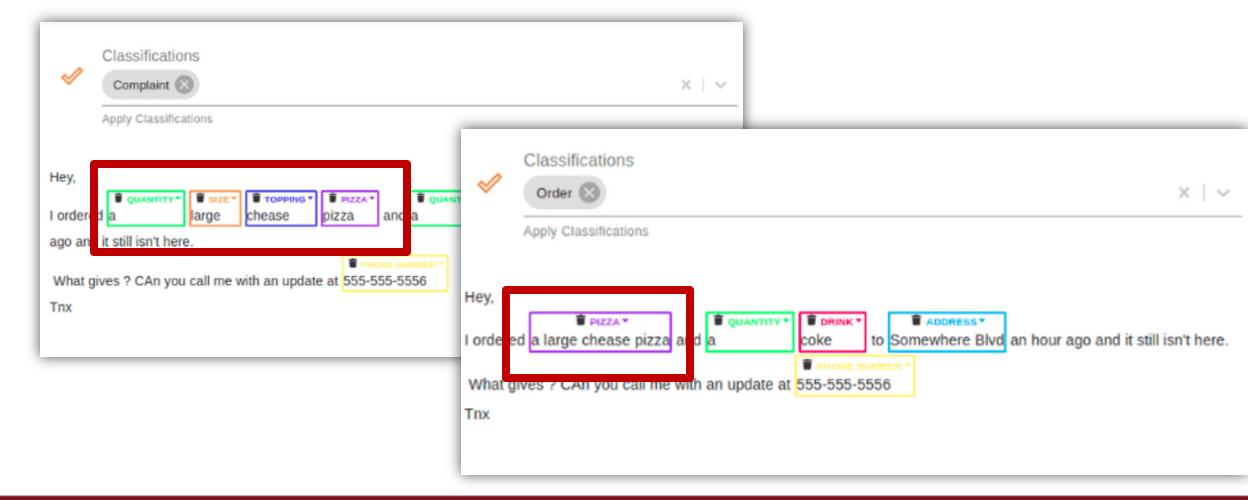
I ordered a large chease pizza and a coke to Somehwere Blvd an hour ago! It still isn't here!!!! What gives ?! Can you call me with an update ? 555-555-556

Bob classifies this as an order because it has all of the information an order would have.

Disagreement

Syntactic errors

A large cheese pizza is a pizza after all, so why not label the whole phrase as pizza?

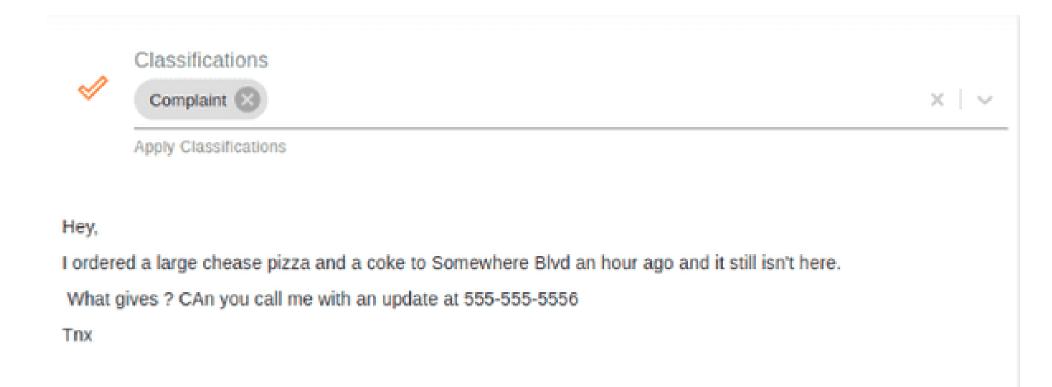


Disagreement

Intents

Conflict between document intent and entity tags

- This is "Complaint" intent
- So, didn't annotate any entities because this is not an order



Disagreement for subjective datasets

Dilemmas	1st action: "refusing to do a survey on the credit card reader while paying with cash at the Office Max." 2nd action: "saying my bf has no right to dictate who I tell about my abortion."	l annotator votes for the <u>first action</u> is less ethical while 4 others vote the <u>second action</u> is less ethical → Aggregated Label: 2nd action is less ethical	Binary: 1 Continuous: 1/5
Dynasent	"Had to remind him to toast the sandwich."	4 annotators believe it's <u>negative</u> while one think it is <u>neutral</u> → Aggregated Label: negative	Binary: 1 Continuous: 1/5
Politeness	"Where did you learn English? How come you're taking on a third language?"	5 annotators politeness scores are 5, 13, 9, 11, 11 with the maximum of 25. → Aggregated Label: impolite	Binary: 0 Continuous: 0

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

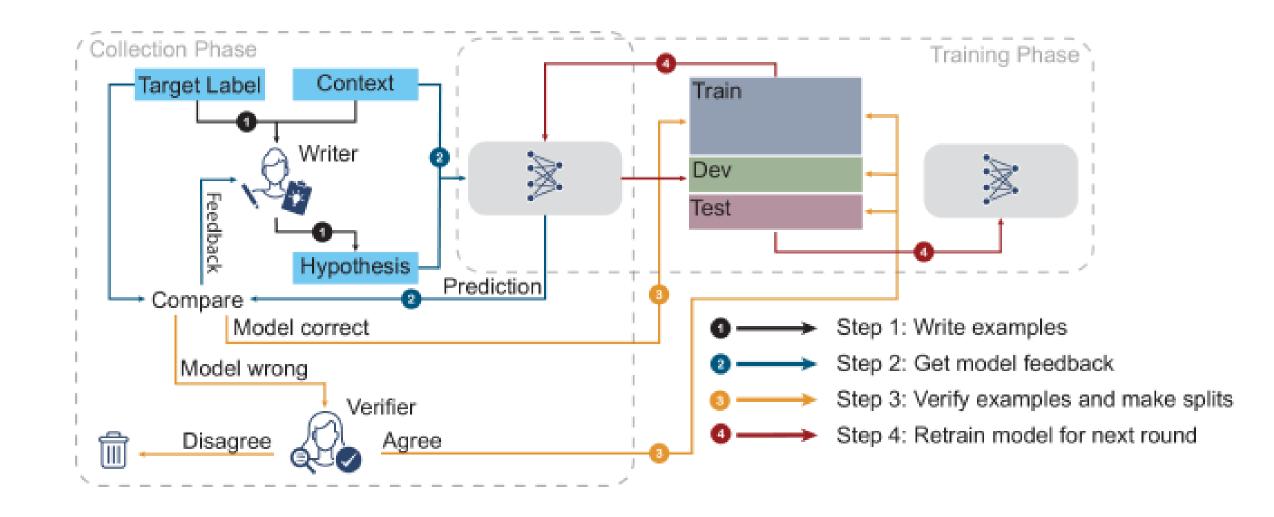
Disagreement for subjective datasets

Table 1: Examples from the five disagreement datasets used in this paper. A stands for annotator.

Datasets	Text	Annotation Distribution	Disagreement Label
SBIC	"Abortion destruction of the nuclear family contraceptives feminism convincing women to wait for children damaging economy so youth cannot leave the nest ramping up tensions between sexes all serves one primary goal to lower the population."	A1 (age: 32, politics: liberal, race: white, gender: woman) votes for inoffensive A2 (age: 34, politics: liberal, race: white, gender: woman) votes for inoffensive A3 (age: 29, politics: mod-liberal, race: hispanic, gender: woman) votes for offensive —— Aggregated Label: inoffensive	Binary: 1 Continuous: 1/3
SChem101	"It's okay to have abortion."	A1 (age: 30-39, education: high school, race: white, gender: woman) votes for people ocassional think this A2 (age: 40-49, education: grad, race: white, gender: man) votes for controversial A3 (age: 30-39, education: bachelor, race: white, gender: man) votes for common belief A4 (age: 21-29, education: high school, race: white, gender: woman) votes for controversial A5 (age: 30-39, education: bachelor, race: hispanic, gender: woman) votes for controversial A5 (age: 30-39, education: bachelor, race: hispanic, gender: woman) votes for controversial	Binary: 1 Continuous: 2/5

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

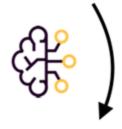
Advanced annotation techniques



Adversarial NLI: A New Benchmark for Natural Language Understanding

1. Human generates question q and selects answer a_h for passage p.

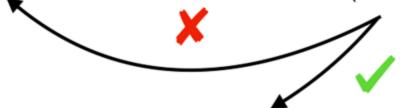
2. (p, q) sent to the model. **Model** predicts answer a_m .



4(b). Human loses.

The process is restarted (same p).

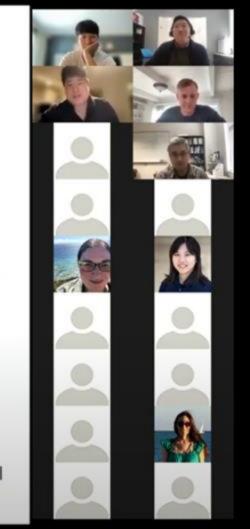
3. F1 score between a_h and a_m is calculated; if the F1 score is greater than a threshold (40%), the human loses.

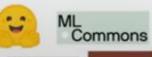


4(a). Human wins. The human-sourced adversarial example (p, q, a_h) is collected.

Bartolo et al. in Beat the Al: Investigating Adversarial Human Annotation for Reading Comprehension

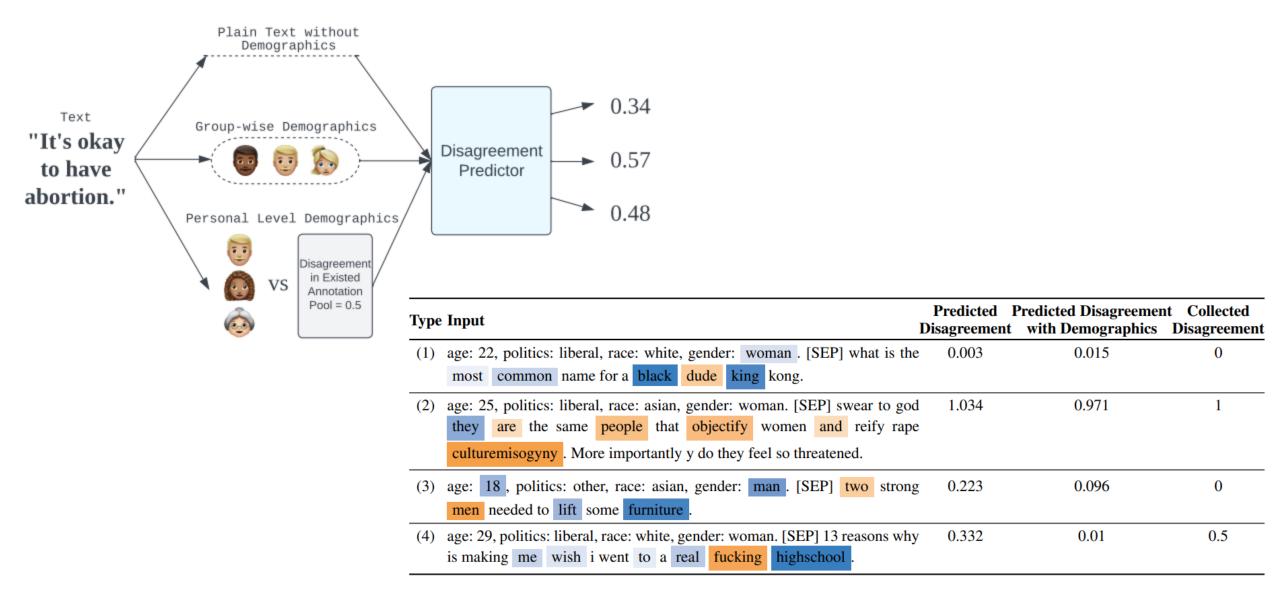
Dynabench: Rethinking Benchmarking in Al





FACEBOOK AI

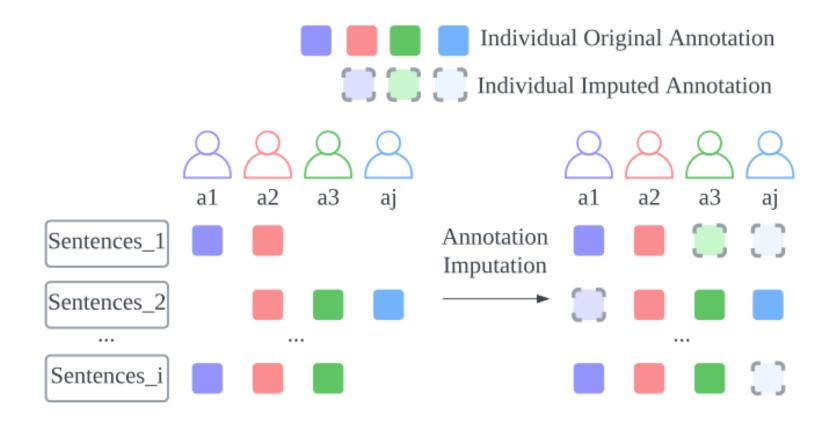
https://www.youtube.com/watch?v=3LP24xp5Bro



https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

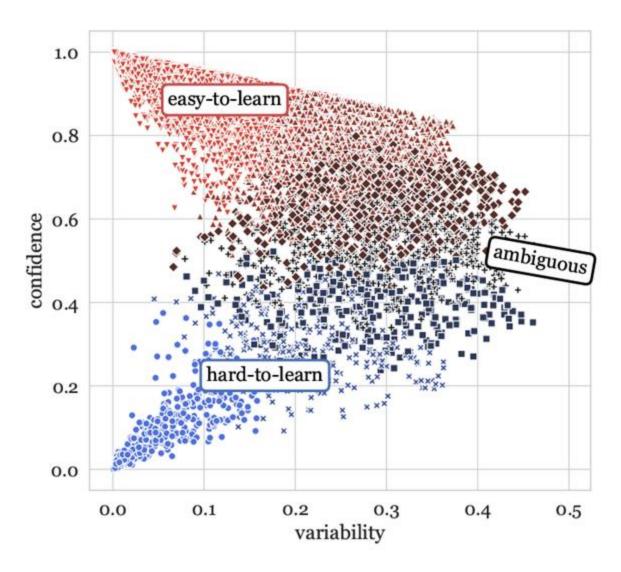
Annotation Imputation



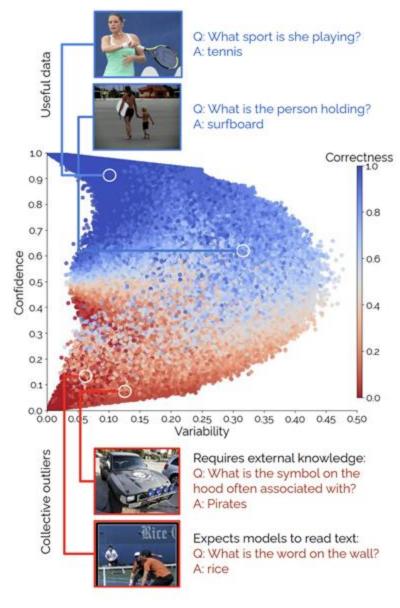
https://www.youtube.com/watch?v=x01ksJ9AW-w&ab_channel=LondonLowmanstonelV

Annotation Imputation to Individualize Predictions: Initial Studies on Distribution Dynamics and Model Predictions, NLPerspectives @ECAI 2023

M



Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics, Swayamdipta et al., 2020



Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering, Karamcheti et al, 2021

64

Collaborative Annotation

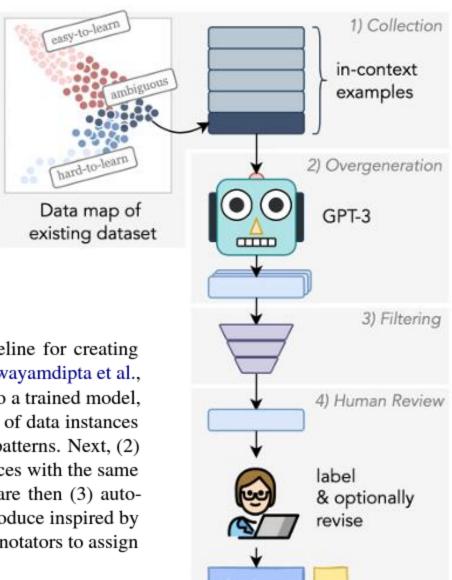
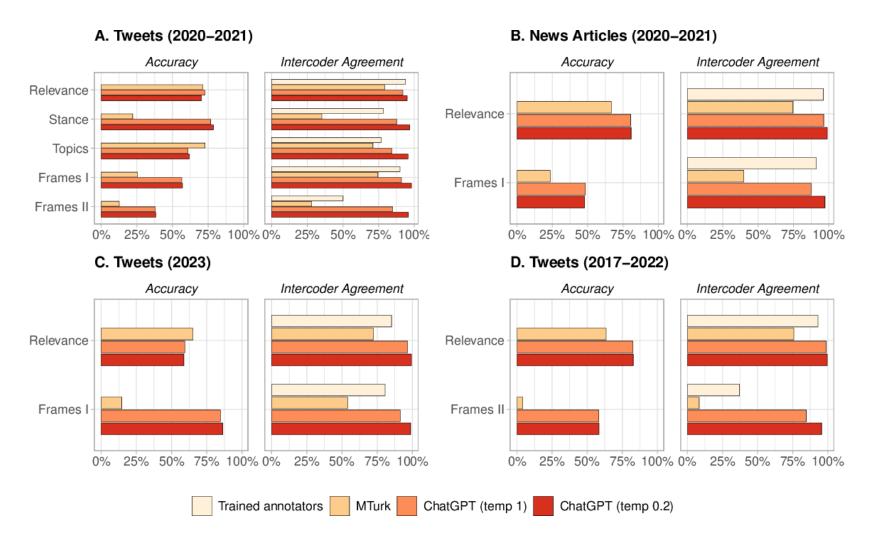


Figure 1: An illustration of our pipeline for creating WANLI. Starting with a data map (Swayamdipta et al., 2020) of an existing dataset relative to a trained model, (1) we automatically identify pockets of data instances exemplifying challenging reasoning patterns. Next, (2) we use GPT-3 to generate new instances with the same pattern. These generated examples are then (3) automatically filtered via a metric we introduce inspired by data maps, and (4) given to human annotators to assign a gold label and optionally revise.

WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation

LLMs as Annotators and Synthetic Data

ChatGPT as Annotaators

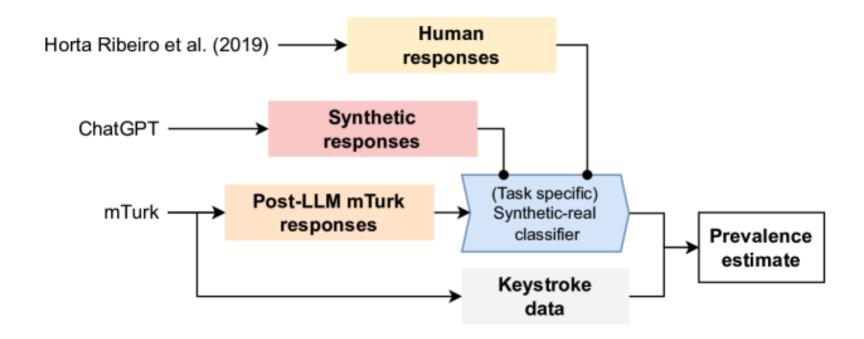


ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks https://arxiv.org/abs/2303.15056

LLMs as Annotators

Normally, a human makes a request to a computer, and the computer does the computation of the task. But **artificial artificial intelligences** like Mechanical Turk invert all that.

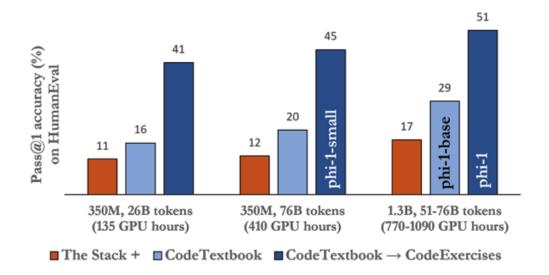
Jeff Bezos



Artificial Artificial Intelligence: Crowd Workers Widely Use Large Language Models for Text Production Tasks https://ar5iv.labs.arxiv.org/html/2306.07899

High quality data is all you need

- ☐ Chinchilla shows that 70B model could beat 350B models, if it was trained on more tokens (1.4 Trillion tokens)
- □ Data quality could break the scaling laws.
- ☐ Synthetic data (code exercises) filtered with a GPT4-generated quality rating (educational value)



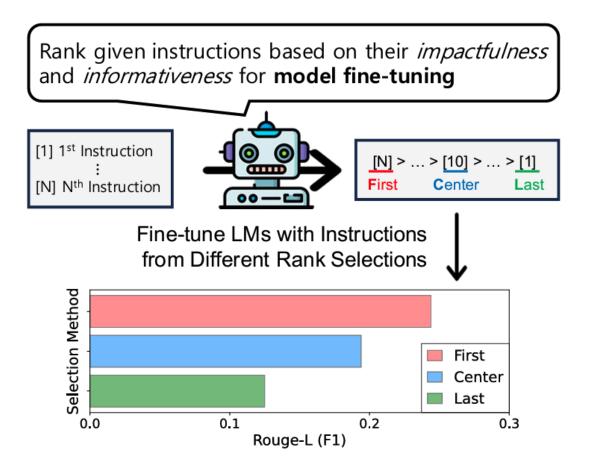
Educational values deemed by the filter High educational value Low educational value import torch import re import torch.nn.functional as F import typing def normalize(x, axis=-1): """Performs L2-Norm.""" class Default (object): def __init__(self, vim: Nvim) -> None: denom = torch.norm(x, 2, axis, keepdim=True) self._vim = vim .expand as(x) + 1e-12self._denite: typing.Optional[SyncParent] return num / denom self._selected_candidates: typing.List[int def euclidean dist(x, v): """Computes Euclidean distance.""" self._candidates: Candidates = [] m, n = x.size(0), y.size(0)self. cursor = 0 xx = torch.pow(x, 2).sum(1, keepdim=True).self. entire len = 0 expand(m, n) self._result: typing.List[typing.Any] = [] yy = torch.pow(x, 2).sum(1, keepdim=True).self._context: UserContext = {} $self._bufnr = -1$ dist = xx + yy - 2 * torch.matmul(x, y.t()) $self._winid = -1$ dist = dist.clamp(min=1e-12).sqrt() self._winrestcmd = '' return dist self._initialized = False self._winheight = 0 def cosine_dist(x, y): self._winwidth = 0 """Computes Cosine Distance.""" self._winminheight = -1 x = F.normalize(x, dim=1)self._is_multi = False y = F.normalize(y, dim=1) self._is_async = False dist = 2 - 2 * torch.mm(x, y.t())self._matched_pattern = '' return dist

Chinchilla: Training Compute-Optimal Large Language Models, 2203.15556

Textbooks Are All You Need, 2306.11644

LIMA: Less Is More for Alignment 2305.11206

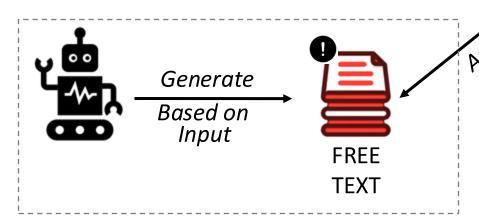
SelectLLM

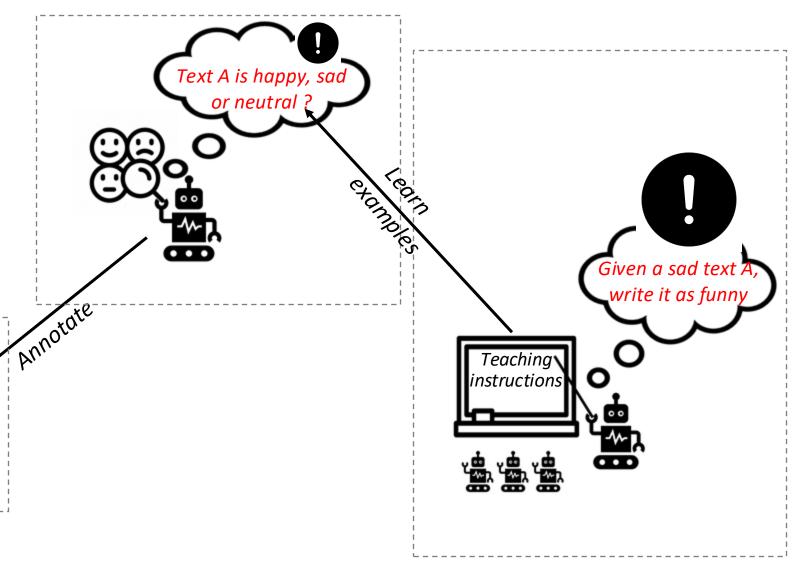


```
The following are {N} candidate instructions
that describe a task, each indicated by a
number identifier [].
[1]
### Instruction: {Example #1 Instruction}
### Input: {Example #1 Input}
[N]
### Instruction: {Example #N Instruction}
### Input: {Example #N Input}
Examine the provided list of {N} instructions
, each uniquely identified by a number in
brackets [].
Your task is to select {num} instructions
that will be annotated by human annotators
for model fine-tuning.
Look for instructions that are clear and
relevant, exhibit a high level of complexity
and detail, represent a diverse range of
scenarios and contexts, offer significant
instructional value and potential learning
gain, and present unique challenges and
specificity.
These selected instructions should ideally be
 the most beneficial for model fine-tuning
after being annotated by human annotators.
Present your selections using the format [].
e.g., [1,2] or [2,3].
The most impactful {num} instructions (only
identifiers) are:
```

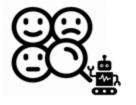
SelectLLM: Can LLMs Select Important Instructions to Annotate? https://arxiv.org/abs/2401.16553

Implications of ubiquitous LLM-generated data

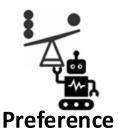


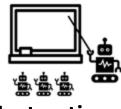


Under the Surface: Tracking the Artifactuality of LLM-Generated Data https://arxiv.org/abs/2401.14698



Task Labels





Instructions

same sentiment.

1) PROMPT:

Choose the sentiment of the given text from positive and negative

Text: a feast for the eves

Response: Positive

2) PROMPT: Which sentence sounds more negative?

Sentence 1: I did not really feel like it was heartfelt since she never called to apologize.

Sentence 2: They were a that's whv.

Human: Sentence 1

bit distracted and a little under-staffed, so maybe

Response:

GPT-3: Sentence 2

3) PROMPT: Instruction 1: You are given a science question and four answer options. Your task is to find the correct answer. Input: Which part of a bicycle BFST moves in a circle? ...

Instruction 2: Given a negative review, convert it to a positive review by making minimal changes.

Input: we stood there in shock. because we...

Response:

Instruction: In this task, you will be given a profile of someone and your job is to generate a set of interesting questions that can lead to a conversation with the person. Input: Yvonne has been playing the violin since she was four years old. She loves all kinds of music, but her favorite composer is Bach.

4) PROMPT: Here's the context for this question: Seeker: My dog is the only reason I haven't ended everything.. I just imagine leaving her. Counsellor response: I want to give my cats a good life that's what keeps me going.

Explorations are when a mental health counsellor shows interest in a seeker by asking about unstated experiences. What level of exploration is expressed in the response? A. strong exploration B. weak exploration C. No exploration.

Response:

Agent 1: I think the response shows strong exploration, because it mentions the importance of a pet in the seeker's life. Answer: A Agent 2: I disagree with Agent1. Thought the response acknowledges a pet, it does not specifically acknowledge the seeker's feelings. I think the level of

5) PROMPT: Based on social media text with a {target sentiment}, can vou write a new text in a similar style with the

Text: Lucian Favre having 2nd thoughts about Gladbach qualifying for the Champions League -Juventus, Man City and Sevilla. Group Of Death.

Target sentiment: Negative

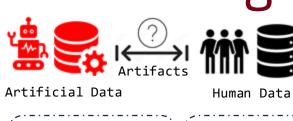
Response:

Why do we get the worst groups every year? This Champions League draw is no different - Real Madrid, Dortmund, and Galatasaray. How are we supposed to advance?

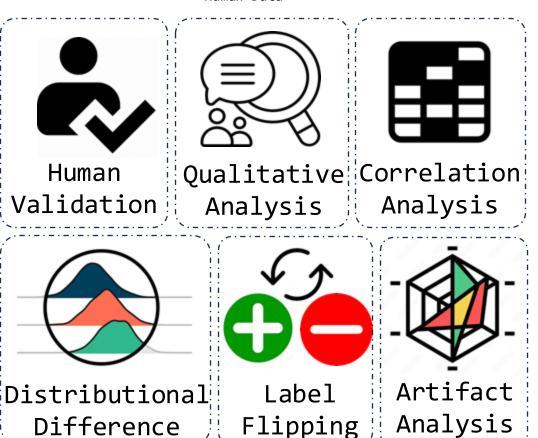
Types of LLMgenerated data

Under the Surface: Tracking the Artifactuality of LLM-Generated Data his year Answer at 14698

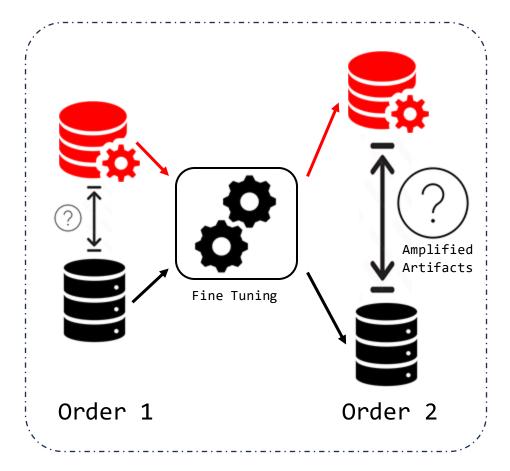
Stress Testing Methods



1st order Stress Testing Methods



2nd order Stress Testing Methods



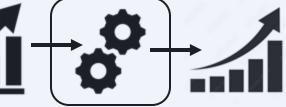
Under the Surface: Tracking the Artifactuality of LLM-Generated Data https://arxiv.org/abs/2401.14698

Overall Findings

Diverse opinions & complex expressions

Mimic human problem solving

Unknown & unfamiliar situations



Amplification of artifacts after training

Under the Surface: Tracking the Artifactuality of LLM-Generated Data https://arxiv.org/abs/2401.14698

Summary

- Tedious annotation tasks will be replaced by Al
- ☐ Human annotation is subjective, inconsistent, and time-consuming.
- ☐ Annotation setup is important to reduce potential biases and artifacts.
- ☐ Lack of dataset for LLM training by Big Techs
- Potentials and Risks of using synthetic data for AI training
- ☐ Human-Al collaborative data annotation and evaluation