
CSCI 5541: Natural Language Processing
Lecture 11: Pretraining Paradigm and Scaling Law

Some slides borrowed from Anna Goldie (Google Brain) 
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http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/
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Agenda
❑ What can we learn from reconstructing the input in the pretrained models?
❑ Pretraining for three types of architectures

o Encoder-only
o Decoder-only
o Encoder-Decoder

❑ GPT3, in-context learning, and VERY large language models
❑ Law of scale
❑ The end of pretrain-scaling and the limits of next token prediction
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Input Reconstruction



CSCI 5541 NLP 6

What can we learn from reconstructing the input?

University of Minnesota is located in _____, Minnesota.

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

University of Minnesota is located in _____, California.

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

I put ___ fork down on the table.

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

The woman walked across the street, checking for traffic 
over ___ shoulder

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

I went to the ocean to see the fish, turtles, seals, and _____. 

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

Overall, the value I got from the two hours watching it was the sum total of 
the popcorn and the drink. The movie was ___.

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko 
pondered his destiny. Zuko left the ______

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ 

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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What can we learn from reconstructing the input?

What I laern from today's NLP class is how taaasty ____ is

https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-large-uncased
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Pretraining
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Pretrained word (type) embeddings
❑ Before 2017: 

o Start with pretrained word embeddings (no context!)
o Learn how to incorporate context in an LSTM or RNN 

while training on the task. 
❑ Some issues to think about: 

o The training data we have for our downstream task 
(like question answering) must be sufficient to teach 
all contextual aspects of language. 

o Most of the parameters in our network are randomly
initialized!

movie gets the same word embeddings, 
regardless of what sentence it appears.
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Pretrained whole (token) embeddings
❑ In modern NLP: 

o All (or almost all) parameters in NLP networks are 
initialized via pretraining. 

o Pretraining methods hide parts of the input from the 
model, then train the model to reconstruct those parts. 

❑ This has been exceptionally effective at building 
strong: 
o representations of language 
o parameter initializations for strong NLP models. 
o probability distributions over language that we can 

sample from

This model has learned how to represent 
entire sentences through pretraining
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Pretraining through language modeling
❑ Recall the language modeling task:

o Model the probability distribution over words 
given their past contexts. 

❑ Pretraining through language modeling: 
o Train a neural network to perform language 

modeling on a large amount of text. 
o Save the network parameters.
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The Pretraining / Finetuning Paradigm

Step 1: Pretrain (on language modeling) 
Lots of text; learn general things!
Serve as parameter initialization.

Step 2: Finetune (on your task) 
Not many labels; adapt to the task!
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Pretraining for three types of architectures

❑ Simple left-to-right language models! 
❑ Nice to generate from; can’t condition on future words 
❑ Examples: GPT-2, GPT-3, LaMDA

Decoders

Encoders
❑ Gets bidirectional context – can condition on future! 
❑ Masked language models
❑ Examples: BERT, RoBERTa

Encoder-
Decoders

❑ Good parts of decoders and encoders? 
❑ What’s the best way to pretrain them? 
❑ Examples: T5, BART
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Decoder - Only

Multi-Head Attention now utilizes KVs from the

decoder model

x
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Pretraining and finetuning decoders
❑ When using language model pretrained decoders, 

we can ignore that they were trained to model 
❑ We can finetune them by training a classifier on 

the last word’s hidden state. 
❑ (Words {w1, w2, … , wT} as inputs) 

❑ Gradients backpropagate through the whole 
network.

[Note how the linear layer hasn’t been 
pretrained and must be learned from scratch.]
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Pretraining and finetuning decoders
❑ It’s natural to pretrain decoders as language models

and then use them as generators, finetuning the 
decoder: 𝑃𝜃 𝑤𝑡 𝑤1:𝑡−1)

❑ This is helpful in tasks where the output is a 
sequence with a vocabulary like that at pretraining 
time!
o Dialogue (context = dialogue history)
o Summarization (context=document)

[Note how the linear layer 
has been pretrained.]

where A, b were pretrained in the language model!
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Generative Pretrained Transformer (GPT)

❑ 2018’s GPT was a big success in pretraining a decoder! 
o Transformer decoder with 12 layers
o 768-dimensional hidden states
o 3072-dimensional feed-forward hidden layers
o Byte-pair encoding with 40,000 merges 
o Trained on BookCorpus: over 7000 unique books.
✔ Contains long spans of contiguous text, for learning long-distance dependencies.

(Radford et al., 2018)
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Generative Pretrained Transformer (GPT)

❑How do we format inputs to our decoder for finetuning tasks?

The linear classifier is applied to the representation of the [EXTRACT] token.

(Radford et al., 2018)
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Generative Pretrained Transformer (GPT)

❑ GPT results on various natural language inference datasets.
❑ Simple but easily adaptable paradigm wins

(Radford et al., 2018)
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Effect of Pretraining in GPT 
❑More layers or data always help



CSCI 5541 NLP 28

Increasingly convincing generations (GPT2)

❑ GPT-2, a larger version of GPT trained on more data, was shown to produce relatively 
convincing samples of natural language

(Radford et al., 2018)
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Generative Pretrained Transformer (GPT)
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Pretraining for three types of architectures

❑ Simple left-to-right language models! 
❑ Nice to generate from; can’t condition on future words 
❑ Examples: GPT-2, GPT-3, LaMDA

Decoders

Encoders
❑ Gets bidirectional context – can condition on future! 
❑ Masked language models
❑ Examples: BERT, RoBERTa

Encoder-
Decoders

❑ Good parts of decoders and encoders? 
❑ What’s the best way to pretrain them? 
❑ Examples: T5, BART
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Encoder Only

x
No Decoding Steps are performed
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Pretraining and finetuning encoders
❑ So far, we’ve looked at language model 

pretraining. But, encoders get bidirectional 
context, so we can’t do language modeling!

❑ Idea: replace some fraction of words in the 
input with a special [MASK] token; predict 
these words.

❑ Only add loss terms from words that are 
“masked out.” If ො𝑥 is the masked version of 𝑥, 
we’re learning 𝑃𝜃 𝑥 ො𝑥) called Masked LM.
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BERT: Bidirectional Encoder 
Representations from Transformers
❑ Devlin et al., 2018 proposed the “Masked LM” 

objective and released the weights of their 
pretrained Transformer (BERT). 

❑ Details about Masked LM for BERT: 
o Predict a random 15% of (sub)word tokens. 

✔ Replace input word with [MASK] 80% of the time 
✔ Replace input word with a random token 10% of the time 
✔ Leave input word unchanged 10% of the time (but still predict it!) 

– Why? Doesn’t let the model get complacent and not build strong 
representations of non-masked words. (No masks are seen at fine-
tuning time!)

(Devlin et al., 2018)

Original text: “I went to the store”



CSCI 5541 NLP 34

❑Unified Architecture: As shown below, there are minimal differences between the pre-
training architecture and the fine-tuned version for each downstream task

BERT: Bidirectional Encoder 
Representations from Transformers

(Devlin et al., 2018)
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❑ The pretraining input to BERT was two separate contiguous chunks of text:

❑ BERT was trained to predict whether one chunk follows the other or is randomly 
sampled. 
o Later work; RoBERTa (Liu et al., 2019) has argued this “next sentence prediction” is not necessary.

BERT: Bidirectional Encoder 
Representations from Transformers

(Devlin et al., 2018)
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Details about BERT Training
❑ Two models were released: 

o BERT-base: 12 layers, 768-dim hidden, 12 attention heads, 110 million params. 
o BERT-large: 24 layers, 1024-dim hidden, 16 attention heads, 340 million params. 

❑ Trained on: 
o BookCorpus (800 million words) 
o English Wikipedia (2,500 million words) 

❑ Pretraining is expensive and impractical on a single GPU. 
o BERT was pretrained with 64 TPU chips for a total of 4 days 

o TPUs are special tensor operation acceleration hardware developed by Google

❑ Finetuning is practical and common on a single GPU 
o “Pretrain once, finetune many times.”

(Devlin et al., 2018)
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❑ BERT was massively popular and hugely versatile; finetuning BERT led to 
new state-of-the-art results on a broad range of tasks.

BERT-base was chosen to have the same number of parameters as OpenAI’s GPT

BERT: Bidirectional Encoder Representations 
from Transformers

(Devlin et al., 2018)
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BERT: Bidirectional Encoder Representations 
from Transformers

(Devlin et al., 2018)



CSCI 5541 NLP 39

Extension of BERT
❑ You’ll see a lot of BERT variants like RoBERTa, SpanBERT, ++ 

o RoBERTa: mainly just train BERT for longer and remove next sentence prediction!
o SpanBERT: masking contiguous spans of words makes a harder, more useful 

pretraining task

(Liu et al., 2019; Joshi et al., 2020)
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Limitations of pretrained encoders
❑ If your task involves generating sequences, consider using a pretrained 

decoder; BERT and other pretrained encoders don’t naturally lead to nice 
autoregressive (1-word-at-a-time) generation methods.
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Pretraining for three types of architectures

❑ Simple left-to-right language models! 
❑ Nice to generate from; can’t condition on future words 
❑ Examples: GPT-2, GPT-3, LaMDA

Decoders

Encoders
❑ Gets bidirectional context – can condition on future! 
❑ Masked language models
❑ Examples: BERT, RoBERTa

Encoder-
Decoders

❑ Good parts of decoders and encoders? 
❑ What’s the best way to pretrain them? 
❑ Examples: T5, BART
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Encoder - Decoder
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Pretraining encoder-decoders
❑What Raffel et al., 2018 found to work best was 

span corruption. Their model: T5. 

❑ Replace different-length spans from the input 
with unique placeholders (<x>, <y>); decode out 
the spans that were removed!

(Raffel et al., 2018)
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Pretraining encoder-decoders
❑ Raffel et al., 2018 found encoder-decoders to work better than decoders 

for their tasks, and span corruption (denoising) to work better than 
language modeling.

(Raffel et al., 2018)
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Pretraining encoder-decoders
A fascinating property of T5: 
❑ finetune to answer a wide range of questions, 

retrieving knowledge from its parameters
❑ Multi-task learning

(Raffel et al., 2018)
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Pretraining for three types of architectures

❑ Simple left-to-right language models! 
❑ Nice to generate from; can’t condition on future words 
❑ Examples: GPT-2, GPT-3, LaMDA

Decoders

Encoders
❑ Gets bidirectional context – can condition on future! 
❑ Masked language models
❑ Examples: BERT, RoBERTa

Encoder-
Decoders

❑ Good parts of decoders and encoders? 
❑ What’s the best way to pretrain them? 
❑ Examples: T5, BART
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GPT3, in-context learning, 

and VERY large language 

models
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GPT3, in-context learning, and VERY large language models
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What are the scaling limits of large language models?
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Data vs performance
❑ What’s a data scaling law? simple formula that maps dataset size (n) to 

error

(Hestness+ 2017) (Kaplan+ 2020)

Data scaling law in LLMs:
Loss and dataset size is linear on a log-log plot
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GPT3

❑ GPT-2 but even larger: 1.3B -> 175B parameter models

❑ Trained on 570GB of Common Crawl
❑ 175B parameter model’s parameters alone take >400GB to store (4 bytes per param). 

Trained in parallel on a “high bandwidth cluster provided by Microsoft”

Brown et al. (2020)
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GPT3, in-context learning, and VERY large language models

❑ So far, we’ve interacted with pretrained models in two ways: 
o Sample from the distributions they define 
o Fine-tune them on a task we care about, and then take their predictions

❑ Emergent behavior: Very large language models seem to perform some 
kind of learning without gradient steps simply from examples you provide 
within their contexts. 
o GPT-3 is the canonical example of this. The largest T5 model had 11 billion 

parameters. GPT-3 has 175 billion parameters
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In-context learning
❑ Step 1: Specify the task to be performed, 
❑ Step 2: the conditional distribution (i.e., “loutre”…) mimics performing the 

task to a certain extent.

Input (prefix within a single Transformer decoder context):

Output (conditional generation)

“
thanks -> merci 
hello -> bonjour 
mint -> menthe 
otter ->
”

loutre …
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In-context learning
❑ Very large language models seem to perform some kind of learning 

without gradient steps simply from examples you provide within their 
contexts.
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GPT3
❑ Key observation: 

few-shot learning 
only works with the 
very largest models!

Brown et al. (2020)
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GPT3

❑ Sometimes very impressive, sometimes very bad
❑ Results on other datasets are equally mixed — but still strong for a few-

shot model!

Brown et al. (2020)
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Scaling Laws
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Scaling law in language model
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Scaling Laws in LLM Pretraining
Kaplan et al. (2020)
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https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html


CSCI 5541 NLP 62

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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Emergent behavior from Scaling Law:
Quantum performance jump when +100B parameters

Jeff Dean https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html

https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html
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Phase transitions
❑ Thus far: everything has had linear 

scaling (with different slopes). 
❑ Phase transitions are sudden, 

discontinuous jumps in 
performance. 

❑ The GPT-3 paper has some 
intriguing observations on phase 
transitions..

❑ Do we expect to see more phase 
transitions? This is probably the ‘big 
unknown’ in LM scaling!
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Grokking

Jeff Dean https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html

If we keep training past the 
point where our training loss 
declines – we can still see 
improvements in the test 
even past saturation of train 
loss towards 0

https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html
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Scaling Law in Vision-Language Model

Figure 4. The generated image for the text “A portrait photo of a kangaroo wearing an orange hoodie and blue 
sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome 
Friends!”. Note the model gets the text in the image “welcome friends” correct at 20B.

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af
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Pre-Training Costs Have Grown Over Time
Cost of Training at time of training ($)
❑ BERT-Large (3.3k)
❑ GPT3 (4.3M)
❑ PaLM (12.4M)
❑ Llama2 (3.9M)
❑ GPT4 (78.4M)
❑ Gemini Ultra (191.43M)
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Q: Can big language models solve every problem?
❑ We can use scaling laws to answer this!

o For each capability (e.g. question answering).. 
o Build a scaling law for compute capacity. 
o Extrapolate the scaling curve. 

❑ Can ‘reasonable’ amounts of compute solve 
our problems?
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Human Level Reasoning Through Scaling?

If the scaling law holds.. Roughly 64 times more parameters will 
get us to human-level
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PhD Level AI? 
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End of Pretrain-Scaling and the 
Limits of Next Token Prediction 

(NTP)
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Potential Limitations: Irreducible Error
❑ Every dataset has some error due to 

randomness
❑ We don’t have access to the 

generating processes of text (or in 
multimodal cases, vision/speech) 
and so cannot remove randomness

❑ Sets lower bound on our loss 
function
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Potential Limitations: Embodied Understanding
❑ Verbal Reasoning vs. Spatial 

Reasoning
❑ Crystallized Intelligence vs. Fluid 

Intelligence
❑ Models that only predict next tokens 

may be missing out on the problem 
solving abilities more present in 
Fluid Intelligence and Spatial 
Reasoning
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Potential Limitations: Train-Test Barrier
❑ The model does not update its 

parameters online as a person does
❑ The only way to ‘learn’ is to utilize 

better in-context-learning methods
❑ This barrier can prevent models 

from incorporating new information 
about the world

❑ If in-context learning is insufficient, 
we might get stuck

Inference

Train

Hard Divide 

between when 
we train and test



CSCI 5541 NLP 76

Potential Limitations: Domain Expertise
❑ When there is a limited number of 

tokens to train on, the performance 
of models is worse with next token 
prediction methods alone

❑ Low Resource Languages
❑ Underused APIs/Codebases
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Potential Limitations: Long Context
❑ When the next token requires an 

extremely long context, LLM 
performance can suffer

❑ Current approaches have to increase 
context size or use some efficient 
methods to reduce 
computation/storage requirements
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End of Pretrain Scaling
❑ Performance scales logarithmically 

with respect to inputs (dataset 
size/model size/training compute)

❑ Logarithmic improvements do not 
scale well

❑ Eventually, inputs become too 
expensive to continue to see 
improvements justified
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End of Pretrain Scaling: Bottlenecks
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Alternatives: Better Post-Training
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Alternatives: Inference Scaling Laws

Image credits: Jim Fan

Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling. 
- DeepSeek-Coder increases from 15.9% with one sample to 56% on SWE-Bench
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters. 
- PaLM 2-S beats a 14x larger model on MATH with test-time search. 
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Alternatives: Reasoning
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Alternatives: Agentic Scaffolding
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Alternatives: MultiModal Next Token Prediction

https://magazine.sebastianraschka.com/p/understanding-multimodal-llms
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Remarks
❑We learned about GPT-X, BERT, T5 and other large pre-trained language models
❑Emergent in-context learning is not yet well-understood!
❑“Small” models like BERT have become general tools in a wide range of settings.
❑Some tasks will just improve continually via scale and even jump (i.e., emergent 

behavior). 
❑Scaling laws are interesting for everyone!

o Theorists (why do we get scaling laws)
o Practitioners (lets use scaling laws to optimize)
o AI enthusiasts (can we get AGI with more gpus?)

❑Many alternatives left to explore
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