CSCI 5541: Natural Language Processing

Lecture 10: Deep Dive on Transformers

Using some slides borrowed from Anna Goldie (Google Brain) and John Hweitt (Stanford)

Announcement (0304)

 \Box Cancel Colab Pro Payment \rightarrow Should be attached to your accounts now

Proposal Report

- o Due Tonight
- Lookout for our review of your report and suggestions for changes/improvements to what you submit
- □ HW4 Released (due 3 weeks from today)
- Small Due Date Changes
 - Homeworks moved from Tuesday to Thursday
 - Project Midterm pushed back one week

Stacked Bidirectional RNN trained to predict next word in language modeling task Transformer-based model to predict masked word using bidirectional context and next sentence prediction

Pecap

At the end, we have one representation for each layer for each token

Summary of Transformers

- A sequence-to-sequence model based entirely on attention
- Strong results on translation and a wide variety of other tasks
- Faster: More easy to train in a parallel fashion
- □ (At right) Encoder-Decoder Transformer

Strong results/findings and applications of Transformers

Strong results with Transformers on machine translation

Madal	BL	Training Cost (FLOPs)			
Model	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2			$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	2	$.3\cdot 10^{19}$	$1.4\cdot 10^{20}$
ConvS2S [9]	25.16	40.46	9	$.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	2	$.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4			$8.0\cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	1	$.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	7	$7.7 \cdot 10^{19}$	$1.2\cdot10^{21}$
Transformer (base model)	27.3	38.1		3.3 ·	10 ¹⁸
Transformer (big)	28.4	41.8		2.3 ·	10^{19}

[Test sets: WMT 2014 English-German and English-French]

Strong results with Transformers on document summarization

Model	Test perplexity	ROUGE-L
seq2seq-attention, $L = 500$	5.04952	12.7
Transformer-ED, $L = 500$	2.46645	34.2
Transformer-D, $L = 4000$	2.22216	33.6
Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2
Transformer-DMCA, $MoE-128$, $L = 11000$	1.92871	37.9
Transformer-DMCA, MoE-256, $L = 7500$	1.90325	38.8

Strong results with (pre-trained) Transformers on classification tasks

Sentiment classification on SST-2 dataset

Rank Model Accuracy Paper Code Result Year Tags @ SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized 0 -33 2019 SMART-RoBERTa Large 97.5 Transformer Optimization Exploring the Limits of Transfer Learning with a Unified 0 -2019 2 T5-3B 97.4 Transformer Text-to-Text Transformer Muppet: Massive Multi-task Representations with Pre-0 -31 97.4 2021 MUPPET Roberta Large Finetuning ALBERT: A Lite BERT for Self-supervised Learning of 0 -1 2019 ALBERT 97.1 Transformer Language Representations Exploring the Limits of Transfer Learning with a Unified 0 -2019 T5-11B 97.1 5 Transformer Text-to-Text Transformer StructBERT: Incorporating Language Structures into Pre-StructBERTRoBERTa ensemble 97.1 -1 2019 Transformer training for Deep Language Understanding XLNet: Generalized Autoregressive Pretraining for XLNet 0 -9 97 2019 Transformer Language Understanding (single model) ELECTRA: Pre-training Text Encoders as Discriminators 0 -31 ELECTRA 96.9 2020 8 Rather Than Generators Entailment as Few-Shot Learner 0 Ð 2021 EFL 96.9 9 Transformer XLNet: Generalized Autoregressive Pretraining for XLNet-Large 0 -11 10 96.8 2019 Transformer Language Understanding (ensemble) RoBERTa: A Robustly Optimized BERT Pretraining 96.7 0 -91 2019 11 RoBERTa Transformer Approach

https://paperswithcode.com/

Transformers used outside of NLP

Protein folding

AlphaFold2 (Jumper et al., 2021)

Image Classification

Vision Transformer (ViT) outperforms ResNet-based baselines with substantially less compute (Dosovitskiy et al. 2020)

Scaling laws

- With Transformers, language modeling performance improves smoothly as we increase model size, training data, and computing resources.
- This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing down!

Kaplan et al., 2020, Scaling Laws for Neural Language Models

Why self-attention?

Recurrence in RNNs

Encoding: Encode input sentences with bi-directional LSTM **Decoding**: Define your outputs (parse, sentence, summary) as a sequence/label, and use LSTM to decode it.

Sequence-to-sequence with attention

Use **attention** to allow flexible access to input memory

Decar

Issues with recurrent models: Linear interaction distance

Forward RNNs are unrolled "left-to-right".

It encodes linear locality:

• Nearby words often affect each other's meanings

Info of *chef* has gone through O(sequence length) many layers!

e, Car

Issues with recurrent models: Lack of parallelizability

- Forward and backward passes have O(seq length) un-parallelizable operations
 - GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden states can't be computed fully before past RNN hidden states have been computed
 - Particularly problematic as sequence length increases, as we can no longer batch many examples together due to memory limitations

Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about (self) attention?

Attention treats each word's representation as a query to access and incorporate information from a set of values.

- We saw attention from the decoder to the encoder;
- Self-attention is encoder-encoder (or decoder-decoder) attention where each word attends to each other word within the input (or output).

All words attend to all words in previous layer; most arrows are omitted

O(seq length) O(Layers)

CSCI 5541 NLP

"I went to the store. At the store, I bought fresh strawberries."

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Layers

וווולא:// גוווומהירסוווילהאבאנגי הבוראל

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Encoder: Self-Attention

Recap: Attention as a **query** to access and incorporate information from a set of **values**.

Let's think of attention as a "fuzzy" or approximate hashtable:

- To look up a value, we compare a query against keys in a table.
- 🔲 In a hashtable
 - Each query (hash) maps to exactly one key-value pair.
- In (self-)attention:
 - Each query (token in current layer) matches each key to varying degrees.
 - We return a sum of values (token in previous layer) weighted by the query-key match (attention score).

Encoder: Self-Attention

In (self-)attention: Each query (token in current layer) matches each key to varying degrees. We return a sum of values (token in previous layer) weighted by the query-key match (attention score).

query (token in current layer)

Recipe for Self-Attention in the Transformer Encoder

Model parameters to learn (randomly initialized)

Step 1: For each word x_i, calculate its query, key, and value.

$$q_i = W^Q x_i \quad k_i = W^K x_i \quad v_i = W^V x_i$$

Step 2: Calculate attention score between query and keys.

$$e_{ij} = q_i \cdot k_j$$

Step 3: Take the softmax to normalize attention scores. $\alpha_{ij} = softmax(e_{ij}) = \frac{exp(e_{ij})}{\sum exp(e_{ik})}$ Step 4: Take a weighted sum of values. Output

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

Step 1: For each word , calculate its query, key, and value.

 $Q = XW^Q$ $K = XW^K$ $V = XW^V$

Step 2: Calculate attention score between query and keys.

 $E = QK^T$

Step 3: Take the softmax to normalize attention scores.

A = softmax(E)

Step 4: Take a weighted sum of values.

Output = AV

 $Output = softmax(QK^T)V$

Model parameters to learn (randomly initialized)

$$Q = XW^Q$$
 $K = XW^K$ $V = XW^V$

its query, key, and value.

Step 2: Calculate attention score between query and keys.

 $E = QK^T$

Step 3: Take the softmax to normalize attention scores.

A = softmax(E)

Step 4: Take a weighted sum of values.
Output = AV

$$Output = softmax(QK^T)V$$

Multi-headed self-attention

It gives the attention layer multiple "representation subspaces"

Multiple sets of Query/Key/Value weight matrices (Transformer uses eight attention heads, so we end up with eight sets for each encoder/decoder). Each of these sets is randomly initialized.

Multi-headed self-attention

It gives the attention layer multiple "representation subspaces"

Multiple sets of Query/Key/Value weight matrices (Transformer uses eight attention heads, so we end up with eight sets for each encoder/decoder). Each of these sets is randomly initialized.

Condensing multi-head attentions into a single matrix

1) Concatenate all the attention heads

Z ₀	Z 1	Z ₂	Z_3	Z 4	Z 5	Z ₆	Z ₇

2) Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

3) The result would be the \mathbb{Z} matrix that captures information from all the attention heads. We can send this forward to the FFNN

https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2tipynb

https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

CSCI 5541 NLP

N×

https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Recap

- Pass our input through the W_v , W_k , W_q matrices for each head (corresponding to the 'Linear' boxes at right)
- Perform Scaled dot product attention for each head
- Concatenate the results for each head
- Use linear layer to project to original output dimension

Multi-Head

Attention

Muti-Head Attention

Attention

Other tricks than attention?

But attention isn't quite all you need!

Problem: Since there are no element-wise non-linearities, self-attention is simply performing a re-averaging of the value vectors.

Easy fix: Apply a feedforward layer to the output of attention, providing non-linear activation (and additional expressive power).

ENCODER #1

Equation for Feed-Forward layer

$$m_i = MLP(\text{output}_i)$$

= $W_2 * \text{ReLU}(W_1 \times \text{output}_i + b_1) + b_2$

Stacking deep neural nets

- Training trick #1: Residual Connections
- Training trick #2: LayerNorm
- Training trick #3: Scaled Dot Product Attention

Trick #1: Residual Connections [He et al., 2016]

Residual connections are a simple but powerful technique from computer vision.

- Similar to additive connection in LSTM
- Directly passing "raw" embeddings to the next layer prevents the network from "forgetting" or distorting important information as it is processed by many layers.

$$x_{\ell} = F(x_{\ell-1}) + x_{\ell-1}$$

Residual connections are also thought to smooth the loss landscape and make training easier!

[no residuals] [residuals]

[Loss landscape visualization, Li et al., 2018, on a ResNet]

Trick #2: Layer Normalization [Ba et al., 2016]

- Problem: Difficult to train the parameters of a given layer because its input from the layer beneath keeps shifting.
- Solution: Reduce uninformative variation by normalizing to zero mean and standard deviation of one within each layer.

Mean:
$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l}$$
 Standard Deviation: $\sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}}$

Layer norm vs Batch norm

https://theaisummer.com/normalization

Trick #3: Scaled Dot Product Attention

- After LayerNorm, the mean and var of vector elements is 0 and 1, respectively.
- But, the dot product still tends to take on extreme values, as its variance scales with dimensionality d_k

$$Output = softmax(QK^T)V$$

Updated Self-Attention Equation

$$Output = softmax \left(QK^T / \sqrt{d_k} \right) V$$

Representing The Order of The Sequence Using Positional Encoding

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- Consider representing **each sequence index** as a **vector**

 $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., T\}$ are position vectors

- Easy to incorporate this info into our self-attention block: just add the *pi* to our inputs! $v_i = \tilde{v}_i + n_i$
 - $v_i = \tilde{v}_i + p_i$ $q_i = \tilde{q}_i + p_i$ $k_i = \tilde{k}_i + p_i$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

Position representation vectors through sinusoids

Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := \begin{cases} \sin(\omega_k, t), & \text{if } i = 2k \\ \cos(\omega_k, t), & \text{if } i = 2k+1 \end{cases} \qquad p_i = \begin{cases} \sin(i/10000^{2*1/d}) \\ \cos(i/10000^{2*1/d}) \\ \vdots \\ \sin(i/10000^{2*\frac{d}{2}/d}) \\ \cos(i/10000^{2*\frac{d}{2}/d}) \\ \cos(i/10000^{2*\frac{d}{2}/d}) \end{cases}$$

Pros: Periodicity indicates that maybe "absolute position" isn't as important
 Cons: Not learnable; also the extrapolation doesn't really work

CSCI 5541 NLP

Decoder: Masked Multi-Head Self-Attention

Problem: How do we prevent the decoder from "cheating"? If we have a language modeling objective, can't the network just look ahead and "see" the answer?

Solution: Masked Multi-Head Attention.

At a high-level, we hide (mask) information about future tokens from the model.

Masking the future in self-attention

- To use self-attention in decoders, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- □ To enable parallelization, we mask out attention to future words by setting attention scores to -∞

$$e_{ij} = \begin{cases} q_i^{\mathsf{T}} k_j, j < i \\ -\infty, j \ge i \end{cases}$$

Encoder-Decoder Attention

□ We saw that self-attention is when keys, queries, and values come from the same source.

- In the decoder, we have attention that looks more like seq2seq with attention.
 - Let $h_1 \dots h_T$ be output vectors from the Transformer encoder; $x_i \in \mathbb{R}^T$
 - Let $z_1 \dots z_T$ be input vectors from the Transformer decoder, $z_i \in \mathbb{R}^T$
- Then keys and values are drawn from the encoder (like a memory):

$$\circ \quad \mathbf{k}_{i} = \mathbf{K} \mathbf{h}_{i} \text{ , } \mathbf{v}_{i} = \mathbf{V} \mathbf{h}_{i}.$$

And the queries are drawn from the **decoder**,

Drawback of Transformer

Drawback of Transformer

Static positional embedding representations:

- Are simple absolute indices the best we can do to represent position?
- Relative linear position attention [Shaw et al., 2018]

Quadratic compute in self-attention:

- Computing all pairs of interactions (T^2) means our computation grows quadratically with the sequence length! For recurrent models, it only grew linearly!
- Reduce $O(T^2)$ all-pairs self-attention cost?

Reduce $O(T^2)$ all-pairs self-attention cost?

LinFormer (Wang et al., 2020); O(T^2) -> O(T)

• Map the sequence length dimension to a lower-dimensional space for values, keys

Reduce $O(T^2)$ all-pairs self-attention cost?

BigBird (Zaheer et al., 2021)

 Replace all-pairs interactions with a family of other interactions, like local windows, looking at everything, and random interactions.

State Space Models

https://huggingface.co/blog/lbourdois/get-on-the-ssm-train

Do Transformer Modifications Transfer?

'Surprisingly, we find that most modifications do not meaningfully improve performance.'

						1.			
Vaailla Transformer	223M	11.17	3.50	2.182 ± 0.805	1.839	71.66	17.78	23.02	26.62
GeLU	221M	11.17	3.54	2.179 ± 0.000	1.828	75.79	17.85	25.13	26.47
Swish	223M	11.17	3.62	2.186 ± 0.000	1.847	73.77	17.74	24.34	26.75
KLU .	298M	11.17	3.56	2.270 ± 0.807	1 992	47.85	16.73	29.02	26.04
GLU	223.M	11.17	3.59	2.174 ± 0.003	1.814	74.39	17.42	24.34	97.12
GeGLU	223.14	11.17	3.55	2.130 ± 0.006	1.790	TL 84	18.27	34.87	36.87
BeCLU	223.34	11.17	3.57	2.145 ± 0.004	1.803	78.17	18.36	34.87	27.62
Set 11	223.34	11.17	3.55	2.315 ± 0.004	1.948	49,76	16.76	22.75	25.99
SwiftEll	222.34	11.17	3.53	2.127 ± 0.003	1.799	75.00	18.20	34.34	27.02
LACELE	000.04	11.17	3.55	2149 + 0.005	1.704	75.54	12.42	34.34	26.53
Element	OWER	11.17	3.63	2 201 + 0.019	1.667	74.91	17.51	29.09	26.30
Softsha	2011	11.17	3.47	2.207 ± 0.811	1.850	73.45	17.65	34.34	16.00
era que as			0.11	a ser a conta	1.000		11.00	21.71	-
RMS North	221M	11.17	3.68	2.167 ± 0.808	1.821	75.45	17.94	24.07	27.14
Bouero	221 M	11.17	3.54	2.282 ± 0.803	1.939	61.69	15.94	28.90	26.37
Beasto + LayerNorm	225M	11.17	3.25	2.223 ± 0.806	1.858	70.42	17.58	23.02	26.29
Bears + BMS Norm	223.M	13.17	3.54	2.221 ± 0.009	1.875	70.38	17.38	33.05	26.19
Fixep	223.M	11.17	2.95	2.383 ± 0.013	3.067	38.36	14.42	23.02	26-31
24 layers, dg = 1536, H = 6	224M	11.17	3.33	2.290 ± 0.807	1.943	74.89	17.75	25.18	26.89
18 layers, dg = 2048, IT = 8	225M	13.37	3.38	2.185 ± 0.805	1.831	78.45	16.83	24.34	27.30
8 layers, dg = 4008, M = 18	223M	11.57	3.69	2.190 ± 0.805	1.847	74.58	17.69	23.28	36.85
6 layers, dg = 6104, H = 34	223M	11.17	3.79	2.201 ± 0.010	1.817	73.55	17.58	24.60	38.66
Block sharing	40.14	11.17	3.66	2.497 ± 0.837	2.164	44.50	14.53	21.66	31.48
+ Partorized endeddines	45.54	5.4T	4.75	3.631 ± 0.305	2.183	40.84	14.00	13.84	21.27
+ Estoriard & dered any	20.04	8.17	4.97	2.907 ± 0.313	2.245	52.00	11.37	13.84	25.10
beddings	-			2.001 2.0.213	8.800		10.00	10.04	80.00
Dender only block abaring	17046	11.177	3.68	2 206 4 0 823	1 929	499-490	16.95	29,02	36.93
Decoder cely block sharing	LAUNT	11.17	3.70	2 352 + 0 829	2.002	47.95	16.13	23.61	20.05
contract carly second manual			4.19	2.002 0.0020		81.00	10.13	20.01	20.00
Factorized Embedding	22TM	B-61	3.80	2.208 ± 0.006	1.815	70.41	15.90	22.75	26.50
Factorized & shared embed-	282M	8.17	3.92	2.320 ± 0.010	1.992	65.69	16.33	22.22	26.44
čings									
Tied encoder/decoder in-	248M	11.17	3.55	2.192 ± 0.802	1.940	71.79	17.72	24.34	26.49
put emboddings									
Tied decoder input and sut-	248M	11.17	3.87	2.187 ± 0.807	1.827	T4.86	17.74	34.87	36.67
put embeddings									
Untied embeddings	273M	11.17	3.53	2.185 ± 0.805	1.834	72.99	17.58	23.28	26.48
Adaptive input embeddings	294 <i>M</i>	8.27	3.55	2.250 ± 0.802	1.899	66.5T	16.21	26.0T	26.66
Adaptive softmax	204.M	8.2T	3.60	2.364 ± 0.005	1.882	72.81	16.67	21.16	25.56
Adaptive softmax without	223.M	10.87	3.43	2.229 ± 0.809	1.914	71.82	17.10	23.02	25.72
projection									
Minture of softmaxee	232M	16.37	2.26	2.227 ± 0.817	1.821	76.77	17.62	22.75	26.82
Terrenewant attention	-10112-04	11.17	19.90	2181+0.814	1.071	54.91	10.00	-00 4.6	26.60
Demonic contribution	OUTM	11.07	9.65	2,000 + 0,000	2.047	56.30	13.47	20.14	17.44
Listensight conscious	OMAN	10.47	4.07	2.370 ± 0.818	1.983	43.47	14.66	20.00	24.75
Ended Transformer	224.00	0.01	3.00	2,270 ± 0,019	1.000	10.07	14.00	24.02	24.72
Every real transformer	20104	11.47	3.00	2,220 ± 0,800	1.003	12.00	14.75	26.01	20.38
Synthesizer (dense)	224.04	11.41	3.47	2.004 ± 0.021	1,002	73.00	14.27	10.14	26.63
sinvesses (name bon)	245.04	10.67	0.02	2191 2 0.019	1.540	14.95	15.06	20.01	26.71
showneeder foreige hour m-	10000	12.81	4.04	2.180 2.0.800	1.040		11.04	40.40	20.01
pear) See the days (Testucion T	100004	10.107	10.00	2241.0047	1.000	44.04	15.00	****	20.00
Senthesizer (nartarized)	2011M	10.17	4.95	2,011 ± 0,017	1.000	54.07	10.39	10.55	20.45
Spectroline (random)	201.0	10.11	1.08	2,020 ± 0,012	2.000	34.27	17.00	18.06	20.01
synthesizer (random plue)	282.0	12.81	3.60	2.189 1 0.004	1.942	19.92	17.04	26.87	20.43
picanessant dangen hore	20134	12.85	3.42	2.186 ± 0.800	1.428	15.34	17.08	24,08	25.39
agene)		-					11.07	10.07	
Universal Transformer	54.52	40.81	9.88	2.406 ± 0.656	2:863	70.55	14.09	19.05	25.91
Minture of experts	GRAM	11.77	3.30	2.148 ± 0.006	1.780	14.55	18.13	24.08	36.94
Switch Taasslormer	1100M	11.73	3.18	2.135 ± 0.807	1.758	75.38	18.02	26.19	28.81
Funnel Transformer	221 M	1.93	4.30	2.298 ± 0.808	1.318	67.34	16.26	22.75	23.20
Weighted Transfermer	290M	71.87	0.09	2.579 ± 0.821	1.999	49:04	15.98	23.02	26.30
Product key memory	421.01	396.67	0.25	2.155 ± 0.008	1,798	75.36	17.04	23.55	26.73

Stem/s Early loss Final loss SCLUE X8am WebO WMT EaD

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang*	Hyung Won Chung	Yi Tay	William Fedus
Thibault Fevry †	$\mathbf{Michael}~\mathbf{Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	$\mathbf{Zhenzhong}\ \mathbf{Lan}^{\dagger}$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	${\bf Colin}\; {\bf Raffel}^{\dagger}$

Scaling up Transformer

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hrs)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

Scaling up Transformer

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hrs)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13GB	
BERT-Large	24	1024	16	340M	13GB	

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

Scaling up Transformer

Model	Layers	Width	Heads	Params	Data	Training		
Transformer-Base	12	512	8	65M		8x P100 (12 hrs)		
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)		
BERT-Base	12	768	12	110M	13GB			
BERT-Large	24	1024	16	340M	13GB			
XLNet-Large	24	1024	16	340M	126GB	512x TPU-v3 (2.5 days)		
RoBERTa	24	1024	16	355M	160GB	1024x V100 (1 day)		
GPT-2	48	1600	?	1.5B	40GB			
Megatron-LM	72	3072	32	8.3B	174GB	512x V100 (9 days)		
Turing-NLG	78	4256	28	17B	?	256x V100		
GPT-3	96	12288	96	175B	694GB	?		
Brown et al, "Language Models are Few-Shot Learners", arXiv 2020								

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

Transformers are a new neural network model that only uses attention (and many other training tricks!!)

- However, the models are extremely expensive
- Improvements (unfortunately) seem to mostly come from even more expensive models and more data
- □ If you can afford large data and large compute, transformers are the go to architecture, instead of CNNs, RNNs, etc.
 - Why? On our way back to fully-connected models, throwing out the inductive bias of CNNs and RNNs.

