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How do we go from words to vectors?

How does one-hot encoding work?
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Typical Pipeline for LLMs
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Tokenization

1 Up to this point, we have assumed
the inputs to our MLP/RNNs were
one-hot encoded words

 But, how do we handle
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Tokenization Approaches

Split on spaces

Let’s do tokenization!
Word Based
Split on punctuation
Let ’s do tokenization !
Character Based
L e t ‘ 5 d o) t 0 k e n i 7 a & i o | n !
Sub-word Based Let’s </w> do</w> token ization</w> I</w>
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Tokenization Pipeline

Hello how are U tday?

Normalization
hello how are u tday?

Pre-tokenization
[hello, how, are, u, tday, ?]
Model
[hello, how, are, u, td, ##ay, ?]
Postprocessor

[CLS, hello, how, are, u, td, ##ay, 7, SEP]

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

.\
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Normalization

1 First stage of cleaning up text
(optionally applying some of the
below)

Hello how are U tday?

1 Remove excess whitespace

Normalization

D QemOVE aCCentS hello how are u tday?
J Lowercase words

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

s A
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Pre-Tokenization

 Convert a single string into a list of
strings

4 Splitis typically performed by
whitespace

A With Character tokenization, we
split on each character and skip to
the postprocessor step
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hello how are u tday?
Pre-tokenization

[hello, how, are, u, tday, ?]

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Model

1 Alter the array of strings from the
previous step according to the
vocabulary the given tokenizer has
learned el how, ety 2

1 This step is specific to each | el
tokenizer (Wordpiece/BPE/etC.) [hello, how, are, u, td, ##ay, 7]

4 From right, ‘td" and ##ay’ are in the
vocabulary

 Special strings ('##') are appended
In this case to denote a token

WhICh dOes not begln d Word https://huggingface.col/learn/nlp-course/en/chapter6/1 ?fw=pt

10 AR
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Postprocessor

1 Add beginning and end of sentence
tokenizer

1 Other tokenizer specific steps are
taken here

[hello, how, are, u, td, ##ay, 7]
Postprocessor

[CLS, hello, how, are, u, td, ##ay, ?, SEP]

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

1 AR
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

\/ector of strings to sequence of vec
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Sentences become a sequence of vectors
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But how are tokenizers trained?

1 How do we choose to go from
‘tday’ to 'td’ and ‘H##tay'?

1 How does our model ‘know’ to do hell o e s £ e
this?

[hello, how, are, u, tday, ?]

Model

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

.\
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

... by building a vocabulary

1 We want to build out a complete
list of all possible tokens that we
should use as our list after the
‘model’ step

 The size of all possible tokens
should be big enough to contain a
sufficient number of tokens, but
not too big to contain extremely
rare tokens (most modern LLMs
around ~100k)

[hello, how, are, u, tday, ?]

Model

[hello, how, are, u, td, ##ay, ?]

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

BPE Tokenizer

1. Apply normalization and pre-tokenization to a large dataset of text to get it into a standard format
2. This leaves us with a large set of of strings

3. Start with a vocabulary of the characters present in this set of strings

44, Join the most common pair of successive elements in our vocabulary

5. Repeat (4) until the desired size of the vocabulary is reached
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BPE Tokenizer (Example)

("hug", 10), ("pug", 5), ("pun”, 12), ("bun", 4), (*hugs", 5)
1. Normalization and pretokenization applied

2. Our current set of strings is denoted at right
(with corresponding frequencies)

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

17 AN
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

BPE Tokenizer (Example)

("hug", 10), ("pug", 5), ("pun”, 12), ("bun”, 4), ("hugs", 5)

-

Normalization and pretokenization applied

2. Our current set of strings is denoted at right V={h,u, g, 'p, b, s}
(with corresponding frequencies)

3. Vocabulary representing all characters in this set

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

18 AR
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

BPE Tokenizer (Example)

("hug", 10), ("pug", 5), ("pun”, 12), ("bun", 4), (*hugs", 5)
Normalization and pretokenization applied
Our current set of strings is denoted at right V={h,u, g, 'p, b, s}
(with corresponding frequencies)
\VVocabulary representing all characters in this set
Add most common occurring pair of elements in V=g, D ug)
current vocabulary

’'hu’| = 15, Pug’| = 20, [pu’| = 17, ['un’| = 16, ['bu’| = 4, ['gs’| = 5

W N

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

19 AR
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

BPE Tokenizer (Example)

("hug”, 10), ("pug", 5), ("pun”, 12), ("bun", 4), (*hugs”, 5)
Normalization and pretokenization applied
Our current set of strings is denoted at right V={h,u, g, 'p, b, s}
(with corresponding frequencies)
\Vocabulary representing all characters in this set 'hu’| =15, Tug’| = 20, ['pu’| = 17, [un’| = 16, ['bu| = 4, [gs’] =5
Add most common occurring pair of elements in V=g, D ug)
current vocabulary
Repeat until desired vocab size

i FW N=

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

20 AR
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Other Tokenizers

WordPiece

score = (freq_of_pair)/(freq_of_first_element x freq_of second_element)

Unigram

5 36 20
P 99 (¢ 77 6 .Y — ¢¢..0 P €. P ¢6..)) — - g
([“g"; ", “g"]) = P("p") x P{"“9”) % P(*g") 5 ¥ g3 X = 0.000389

https://huggingface.co/learn/nlp-course/en/chapter6/1 ?fw=pt

21 AR
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https://huggingface.co/learn/nlp-course/en/chapter6/1?fw=pt

Embeddings
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Types and tokens

Type: gopher s2 |15 ] . [o2]os

Token:
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- The gopher is a resident of the dry plains.
- One day, while I was out chasing a gopher, |

wandered off too far.

. It's not often a team loses with stats like this.

Gophers played very well tonight.

"gopher”

52

15 0.2

0.6

32

85 0.6

8.1

-2.2

24 52

34




Contextualization of word representations

Tokenization
\ Language models
Unigram LM : p(w]) = f[;)(f!‘,.)
| love NLP & | love NLP & SR S
v v v v v v v v
+ + + + + + PW:*: pm:i: rc:hy:r Pmih: prc:liyc:
e\
Static or non-contextualized Contextualized
representations representations
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Contextualized word representations

Transform the representation of a tokenin a
sentence (e.g., from a static word embedding)
to be sensitive to its local context in a sentence
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ELMo BERT

(Peters et al., 2018) A J (Devlin et al., 2019)
Stacked Bidirectional RNN trained to predict Transformer-based model to predict masked word using
next word in language modeling task bidirectional context and next sentence prediction
32 10 38 48 ar 40 »2 22 40 [ 33 T8
CT -1t a0 - T 11 | toom ooy S oz o> | | Touan 3 oy |
R R ~ N i —
< -3 | 32 B2 | 98 -4 | 94 & a1 52 14 -3 B2

¥
I 4
| I

15 05 02 08 L 1 a5 21 54 2 15 &1

CSCI 5541 NLP




ELMo BERT

(Peters et al., 2018) h‘ ) (Devlin et al., 2019)
Stacked Bidirectional RNN trained to predict Transformer-based model to predict masked word using
next word in language modeling task bidirectional context and next sentence prediction
az 10 38 446 BT 40 -1 L 22 40 32 (]
e e e e e O I I | I BT ECRTTE |
A A
< -5 32 B2 96 - 24 3. a1 5.2 1.4 -3 62
| —_— like E— = - | — _
[ otan 1. Loyer 1| L Totmn 2 Laer 1| [ Ton 3, Loy 1|
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ELMo

(Peters et al., 2018)

Stacked Bidirectional RNN trained to predict
next word in language modeling task

like >
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BERT

4& J (Devlin et al., 2019)

Transformer-based model to predict masked word using
bidirectional context and next sentence prediction

32 10 38 48 ar 40 »2 22 40 [ 33 T8
-3 | 32 B2 | 98 -4 | 94 & a1 52 14 -3 B2

¥
I 4
| I

15 05 02 08 L 1 a5 21 54 2 15 &1



ELMo (Embeddings from Language Models)

A Big idea: (i) transform the representation of a word (e.g., from a
static word embedding) to be sensitive to its local context in a
sentence and (ii) optimized for a specific NLP task.

A Output = word representations that can be plugged into just
about any architecture a word embedding can be used.

g — W
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Recurrent Neural Network o

RNN allow arbitrarily-sized conditioning contexts;
condition on the entire sequence history.

y Y4 s
A A A
— RO J ) $0—> %3, R, 0O o4, R, O > S5
i i i
X X4 X5

Goldberg 2017

0 AR
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Recurrent neural network language model o

0.15 0.13
0.04 0.06
0 0 0 I 0.01 0.002 0 0.0001 0.0001
_ O |
I the a like love natural language g0 vision  signed . <STOP>
YI 0 (Sl)
3|85 | -1 | 51
A
o
L
®
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. ° si=R(xjysi-1)

L_
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Recurrent neural network language model o

0,06 007
0.05
0.03 0.04
' 0.02
0 [] 0,001 0.003 0.002 - I 0.0001 0.0001
I the a like love natural language g0 vision  signed . <STOP>
53 85 -1 5.1 2.1 87 -7 4.2
A
15 | o5 | 02 | 06 53 | -1 | 05 | 21
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Recurrent neural network language model
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g0

05
0.05 0.03 0.001 0.003 0.04 I 0.002
the a like love natural language
53 85 -1 5.1 2.1 87 -7 4.2 9.7 6.1 95 99
A I
15 | 05 | 02 | o6 53 | -1 | o5 | 21 54 | -2 | 15 | 81
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Recurrent neural network language model o

0.98
0 0.05 0.03 0.001 0.003 0.04 0.001 0.002 0.02 0.04 0.0001 I
I the a like love natural language g0 vision  signed . <STOP>

53 85 -1 5.1 2.1 8.7 -7 4.2 9.7 6.1 9.5 99 -2 52 85 6.8

— like —p  natural language

15 05 02 0.6 53 -1 05 2.1 54 -2 15 8.1 56 52 15 6.1

CSCI 5541 NLP




Recurrent neural network language model o

0.98
0 0.05 0.03 0.001 0.003 0.04 0.001 0.002 0.02 0.04 0.0001 I
I the a like love natural language g0 vision  signed . <STOP>
53 85 -1 5.1 2.1 87 -7 4.2 9.7 6.1 95 99 -2 52 85 6.8 7.3 26 3.1 83
“ I I T T
el like —p  natural =—language = <STOP> =——)
15 05 0.2 0.6 53 -1 05 2.1 54 -2 15 8.1 56 5.2 15 6.1 23 0.6 0.1 0.3
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Bidirectional RNN

Forward RNN
A 4 A A A
[ — like — natural — language > <STOP>
15 | o5 | 02 | o6 53 | -1 | 05 | 21 54 | -2 | 15 | 81 56 | 52 | 15 | 6.1 23| 06 | 01 | 03
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Bidirectional RNN

Backward RNN

CSCI 5541 NLP




Bidirectional RNN

Backward RNN
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Bidirectional RNN

Backward RNN
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Bidirectional RNN

Backward RNN

7
A A 4

A
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Bidirectional RNN

p— language < <
I — like — natural — language r— <STOP>
15| 05 [ 02 | 06 53 | -1 | 05 [ 21 54 | -2 | 15 | 81 56 | 52 | 15 | 6.1 23| o6 | 01| 03
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0 0 0 i5 Of’ 001 0002 004 g 026 0.0001 0.0001

Bidirectional RNN

yl p— O ( S:i[:; SP) \ <& LIRS NG o & o o e ‘ -

p— language < <
I — like — natural — language r— <STOP>
15| 05 [ 02 | 06 53 | -1 | 05 [ 21 54 | -2 | 15 | 81 56 | 52 | 15 | 6.1 23| o6 | 01| 03
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ELMo (Embeddings from Language Models)

Fine-tuning stage:
Fine-tune it for a specific task by combining
RNN output across all layers

Pre-training stage:
Train a Bi-RNN LM with L layers
on unlabeled text corpora

- - | SST-5

CSCI 5541 NLP

—..'ﬁ INCREASE
L TASK ELMO + (ABSOLUTE/
— BASELINE RELATIVE)
” D\ SQuAD |85.8 4.7 7/124.9%
5 — Question Answering SNLI [88.7+0.17 |0.7/5.8%
T — SRL 84.6 3.2/|17.2%
! - F Coref | 70.4 3.2/P.8%
NER 02.22 + 0.10 21%
SST-5 |54.7£0.5 3.3/16.8%



Types and tokens

Type: gopher s2 |15 ] . [o2]os

Token:

- The gopher is a resident of the dry plains.
- One day, while I was out chasing a gopher, |
wandered off too far.

. It's not often a team loses with stats like this.

Gophers played very well tonight.

CSCI 5541 NLP

"gopher”

52

15 0.2

0.6

32

85 0.6

8.1

-2.2

24 52

34




15

The gopheris a
resident of the

dry plains.

4.2

0.7

-5.2

0.1

One day, while | was
out chasing a gopher, |
‘ wandered off too far.

52

05

-6.2

05

The gopher football team
began playing at TCF
Bank Stadium.
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0.5

0.7

-36

25

1.4

2.6

-44

Ski-U-Mabh,
gophers!




ELMo

(Peters et al., 2018)

BERT

(Devlin et al., 2019)

)

Stacked Bidirectional RNN trained to predict
next word in language modeling task

Transformer-based model to predict masked word using
bidirectional context and next sentence prediction

| —_— like
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Attention
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Old Seg2Seq Implementation

The input context serves as a significant bottleneck. Most modern
language models (transformers) implement some improvements

upon this = We'll revisit this in-the-coming-weeks-now

L= 0] Y217t 44012

hate thls mowe

RNN s RNN L. RNN |
| predict | predict predict predict

hate this movie </s>

Encoder Input Decoder
context
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Alleviating the bottleneck

Encoder has more channels to communicate over...

CSCI 5541 NLP

Encoder Decoder
lls regardent : <eos>
—3 —3 E— | — —
¥ et ke b o _1 } P ¥ R
They are  watching : <eo0s> : j T’L | j ,J

<bos>

lls

regardent



Alleviating the bottleneck

Encoder now has more channels to communicate over...
but all the context must follow the final hidden state of the encoder

Encoder Decoder
lls regardent : <eos>
— —3 —3 — E— | — —
} t ¢ t $ } $ } ?
They are  watching : <eo0s> : j T’L | j ,J

<bos> lls regardent
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Enter Attention

T

6.5 22 -3. 9.6

X1a1 + X0, + X303 + X404 + X505

Weighted sum
a; =0 as = 0.32
a; = 0.64 az = 0.02 ay = 08
53 85 =1 5.1 2.1 8.7 =7 4.2 9.7 6.1 9.5 99 -2 5.2 85 6.8 73 26 3.1 83
like natural language processing
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Enter Attention

] Attention allows each output element to

focus on only the relevant parts of the input
sequence

] Thereis no longer a hidden state bottleneck

— the model can focus on any hidden state in === A=
the input sequence o 1 s ’
. AplRERE <R
eij = a(s;—1, h;) c; = Zaijhj XX X Xt
j=1
Figure 1: The graphical illus-
. tration of the proposed model
o i o (e”) = trying to generate the ¢-th tar-
%ij T si = f(si-1,¥i-1,¢:) :
Zkil exp (eix) ) g e g get word y; given a source
= sentence (1, Za,...,ZT).
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Attention Visualized

&

a4,

m Attention weights O
+

soffmax

t1 4

€41 €4,2 €43 €44

Alignment scores

s; computation is repeated at each position (1-4) below, but only s;
shown for sake of brevity

uczymy sie uwagi [STOP]

Y1 Yo Y3 Ya

\ I W I W

—t— 1

hy — hy —3 hy —p hy » So
}(1 XE KS Kd_
We are learning  attention

» S ——P S ——P 53 /P 54

C

4 NVANEVANEYAN

[START] uczymy sie uwagi
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Attention vs Weights from fully-connected layer?

 Fully-connected layer weights W are static w.r.t the input

3.3 - 33 =—03
IW]‘_:I_ = ﬂ.SI I\'Pz‘]_ == l],?l Wl‘s = ﬂ.S Iw],ﬂn = —1.7 W
Inputs m m =

1 Attention scores a are dynamic w.r.t the input context
| nice | day

Examples from Sebastian Raschka

5. SN
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Attention

[ all/VOTd

reply ﬁT, 4P iction: 4
comprehensive 08 pOI'l( bﬁu}f = delicious
his scallops ?
for . o i do n’t
‘g commissioner - even
& the like
thank . 0.4 scallops , and these were a-m-a-z-i-n-g
© fun and tasty cocktails
lik . ., : : . :
e next time 1 'm in phoenix , 1 will go
would 0.2 b k h
ack here
| L] -
highly recommend
S|l L & o8 & & S
S ¥ @ ¢ $ & &
& $ g 0.0

a4 N aientence

Neural Machine Translation by Jointly Learning to Align and Translate Hierarchical Attention Networks for Document Classification

CSCI 5541 NLP
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Attention

a man riding a bike dowr

body of water.

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
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Self-Attention
(Transformers)




BERT

A Transformer or self-attention based waswanieta. 20 Masked Ianguage
model using bidirectional context and next sentence prediction

1 Generates multiple layers of representations for each token
sensitive to its context use.

CSCI 5541 NLP




Classical (causal) language model

Consider only the to predict the next word
(i.e., the final word in a sequence is masked)

Natural —> language —— is

CSCI 5541 NLP




Masked language model

Use to predict a masked word

Natural is ambiguous

CSCI 5541 NLP




Each token in input starts represented by
token and position embeddings

1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural
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The value for time step j at layer i is
the result of attention over all time
stepsin the previous layeri-1

-5 3.2 9.2 9.6

Token 1, Layer 2

1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural

CSCI 5541 NLP




The value for time step j at layer i is
the result of attention over all time
stepsin the previous layeri-1

X144 + X2QA9 + X303

-5 3.2 9.2 9.6

Token 1, Layer 2

a, = 0.4 a; = 0.02
1 a, = Q64
1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural
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-5 3.2 9.2 9.6 -4 9.4 -5. 3.1
Token 1, Layer 2 Token 2, Layer 2
1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural
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5.2

1.4

-3.

8.2

-5 3.2 9.2 9.6
Token 1, Layer 2
1.5 05 0.2 0.6

Token 3

, Layer 2

Token 1, Layer 1

-4 9.4 -5. 3.1
Token 2, Layer 2
53 -1 05 2.1

54

-2

15

8.1

Token 2, Layer 1

like

Token 3,

Layer 1

nat

ural
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32

10

38

46

Token 1

, Layer 3

3.2

9.2

9.6

Token 1, Layer 2

5.2

1.4

-3.

8.2

15

0,5

0.2

0.6

Token 3

, Layer 2

Token 1, Layer 1

-4 9.4 -5. 3.1
Token 2, Layer 2
53 -1 05 2.1

54

-2

15

8.1

Token 2, Layer 1

like

Token 3,

Layer 1

nat

ural




32 10 3.8 46 8.7 40 -1. 5.2
Token 1, Layer 3 Token 2, Layer 3
-5 32 9.2 96 -4 9.4 -5. 3.1 5.2 14 -3. 82
Token 1, Layer 2 Token 2, Layer 2 Token 3, Layer 2
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3.2 1.0 38 46 87 4.0 -1 5.2 9.2 4.0 33 78
Token 1, Layer 3 Token 2, Layer 3 Token 3, Layer 3
-5 3.2 9.2 9.6 -4 9.4 -5. 3.1 5.2 1.4 -3. 8.2
Token 1, Layer 2 Token 2, Layer 2 Token 3, Layer 2
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At the end, we have one representation
for each layer for each token

Input Length (T)
\

3.2 1.0 38 46 87 4.0 -1 5.2 9.2 4.0 33 78
Token 1, Layer 3 Token 2, Layer 3 Token 3, Layer 3
——
S
‘ -5 3.2 9.2 9.6 -4 9.4 -5. 3.1 5.2 1.4 -3. 8.2
—
GJ Token 1, Layer 2 Token 2, Layer 2 Token 3, Layer 2
1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural

CSCI 5541 NLP




Tokenization in BERT

2 BERT uses WordPiece tokenization

The The

1 Vocabulary size: 30,000 cnwiling o sl ing

barked bark #ed

A BERT encodes each sentence by appending a special token to t
beginning ([CLS]) and end ([SEP]) of each sequence
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[SEP]
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Positive sentiment

Sentiment

classifier
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Special tokens are helpful for providing a single
token that can be optimized to represent the entire

sequence (e.g., document classification)
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Positive sentiment

How can we represent the entire document with this one [CLS] vector?
Classification decision relies entirely on that one vector where all the relevant

Sentiment
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classifier

information is compressed into that one vector

63 [ 99 | -5 1.2 32 | 10 | 38 | 46 87 | 40 | -1. | 52 92 | 40 | 33| 78 24 | -5 14 | 72
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[SEP]




Training BERT

INPUT (Tekenized)

0 #1: Masked language modeling N LR

o [Mask] one word from input and try (MASK

to P

to predict that word as output e [uAsK]

50

going

to

o Maximum length =512 Pl o,

Input Length (T)= 512
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Training BERT

A #1: Masked language modeling

o [Mask] one word from input and try
to predict that word as output

o Maximum length =512

o Concatenate two sentences with
[SEP] token

o More powerful than Bidirectional-
RNN LM
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Training BERT

3 #2: Next sentence prediction SRR
1 . s z%,.
o For apair of sentences, predict from skl

) to 1=
[CLS] representation whether they be  JuAsK]

: : . | so . N B
appeared sequentially in the training data ~r= - ..
Next=True [CLS] I like natural language processing [SEP] because NLP is fun [MASK] 2
Next=False [CLS] | like natural language processing [SEP] Minnesota is cold. :"‘ ,59

o This objective turns out to be not that _ doing JSEFI, ot seience-5 coming
effective, found in RoBERTa paper (ietal, |
2019) -
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Objective #1: Masked language modeling

CSCI 5541 NLP

6.3

9.9 -5

1.2

Token 1, Layer 2

32

10 3.8 46

s

I~ =
= =

Token 2, Layer 3

8.7

40 -1

52

LMLM

Token 3, Layer 3

9.2

40 33

7.8

23

6.5

Token 1, Layer 2

Token 4, Layer 3

24

-5. 1.4

7.2

Token 5, Layer 2

88

-4

Token 1, Layer 1

6 05

1.1

[CLS]

Token 2, Layer 1

Token 3, Layer 1

[MASK]

Token 4, Layer 1

3.1

6.7

natural

Token 5, Layer 1

[SEP]




Objective #2: Next sentence prediction

TR I ®5] o [ ad &Fl w0 Bl aa &5 as [ 1 TR I 5] o D s

Lyiv + Lysp

wal a0 (W " wa T} TR w0l ¢ am m EE o0 (BN T wa

[CLS] like natural [SEP] because NLP is fun

IR TRE 53] 1 [l i WF e Al aa &5 ié TN T IR I 55 14 a4

e T Tl W T # AR an EA o [mE " "

[CLS] I like natural [SEP] Minnesota is cold
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Details of BERT training ~ InputLength

32 [ 10 [ 2 [ as 87 [ wo [ 1 [ 52 [22Tuwe2a]vs
Token 1, Layer 3 Token 2, Layer 3 } Token 3, Layer 3

a Deep layers
o 12 layers for BERT-base
o 24 layers for BERT-large s
a Large representation size (768 per layer)

a Pretrained on English Wikipedia (2.5B words) and BookCorpus
(BOOM words)

gl
Bl
b w
HE

L9L|-5131 s,zluJ-alaz
Taken 2, Layer 2 Taken 3, Layer 2

Layers (L)

Lyiv + Lysp

v AN
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Coreference resolution with BERT
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Lee etal. Bjorkelund and Durret and Lee et al. Petersetal.  Joshiet al.
2011 Farkas 2012  Klein 2013 2017 2018 2019
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Semi-supervised Sequence Learming

» Grover

context2vec
Pre-trained seq2seq
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~ Hugging Face s Models Datasets Spaces Docs & So

Other pretrained LMs . ..

gpt2

S marizatio Table Question Answeri
1 Classific Text Generatior
D B E R | Text2Text Generation K5 Token Classification B cardiffnlp/twitter-roberta-base-sentiment
Transiation Zero-Shot Classification
Sentence Similarity
D XLN et bert-base-uncased
Libraries
O PyTorch + TensorFlow MR 1A
distilgpt2
Datasets
D R O B E R | a s i i distilbert-base-uncased
glue squad dcep europarl jrc-acquis
D D . t. | B E RT conli2003 oscar
I S I B sentence-transformers/multi-qa-MinilM-L6-cos-v1
Languages
0 GPT-2/3 we e
&) cl-tohoku/bert-base-japanese-char
Licenses
J Multilingual-BERT
deepset/roberta-base-squad2
Other
@ AutoNLP Compatible o2 Infinity Compatible Tiberiaibase
Eval Results Trained with AutoNLP

Carbon Emissions

https://huggingface.co/models
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https://huggingface.co/models

Summary s 5;5 s

— [ —

i | 4 (el as | @ [l as

1 Word embeddings can be substituted for one-hot encodings in many
models (MLP, CNN, RNN, logistic regression).

1 Bidirectional modeling in ELMo/BERT helps learn more context sensitive
information.

A Attention gives us a mechanism to learn which parts of a sequence to pay
attention to more in forming a representation of it.

1 Static word embeddings (word2vec, Glove) provide representations of word
types; contextualized word representations (ELMo, BERT) provide
representations of tokens in context. o o

o gphrs ThEIPh
tufth

. : dry pl ins.
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