CSCI 5541: Natural Language Processing

Lecture 9: Tokenization, Embeddings, Attention, Transformers

Tokenization

How do we go from words to vectors?

How does one-hot encoding work?

Typical Pipeline for LLMs

Tokenization

- ☐ Up to this point, we have assumed the inputs to our MLP/RNNs were one-hot encoded words
- ☐ But, how do we handle
 - o punctuation?
 - o Mis-spellings?
 - Overlapping suffixes/prefixes/roots?
- ☐ Too much abstraction, let's dig in

Proofreeding

Tokenization Approaches

Word Based

Character Based

Sub-word Based

Tokenization Pipeline

Normalization

Pre-tokenization

Model

Postprocessor

Normalization

- ☐ First stage of cleaning up text (optionally applying some of the below)
- ☐ Remove excess whitespace
- ☐ Remove accents
- Lowercase words

Normalization

Pre-Tokenization

- Convert a single string into a list of strings
- Split is typically performed by whitespace
- With Character tokenization, we split on each character and skip to the postprocessor step

Pre-tokenization

Model

- Alter the array of strings from the previous step according to the vocabulary the given tokenizer has learned
- ☐ This step is specific to each tokenizer (WordPiece/BPE/etc.)
- ☐ From right, 'td' and '##ay' are in the vocabulary
- □ Special strings ('##') are appended in this case to denote a token which does not begin a word

[hello, how, are, u, tday, ?]

Model

[hello, how, are, u, td, ##ay, ?]

Postprocessor

- ☐ Add beginning and end of sentence tokenizer
- ☐ Other tokenizer specific steps are taken here

Postprocessor

Vector of strings to sequence of vectors

Sentences become a sequence of vectors

But how are tokenizers trained?

- ☐ How do we choose to go from 'tday' to 'td' and '##ay'?
- ☐ How does our model 'know' to do this?

... by building a vocabulary

- We want to build out a complete list of all possible tokens that we should use as our list after the 'model' step
- ☐ The size of all possible tokens should be big enough to contain a sufficient number of tokens, but not too big to contain extremely rare tokens (most modern LLMs around ~100k)

BPE Tokenizer

- 1. Apply normalization and pre-tokenization to a large dataset of text to get it into a standard format
- 2. This leaves us with a large set of of strings
- 3. Start with a vocabulary of the characters present in this set of strings
- 4. Join the most common pair of successive elements in our vocabulary
- **5.** Repeat (4) until the desired size of the vocabulary is reached

- 1. Normalization and pretokenization applied
- 2. Our current set of strings is denoted at right (with corresponding frequencies)

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

- 1. Normalization and pretokenization applied
- 2. Our current set of strings is denoted at right (with corresponding frequencies)
- 3. Vocabulary representing all characters in this set

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

V = {'h', 'u', 'g', 'p', 'n', 'b', 's'}

- 1. Normalization and pretokenization applied
- 2. Our current set of strings is denoted at right (with corresponding frequencies)
- 3. Vocabulary representing all characters in this set
- 4. Add most common occurring pair of elements in current vocabulary

```
("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

V = {'h', 'u', 'g', 'p', 'n', 'b', 's'}

|'hu'| = 15, |'ug'| = 20, |'pu'| = 17, |'un'| = 16, |'bu'| = 4, |'gs'| = 5

V = {'h', 'u', 'g', 'p', 'n', 'b', 's', 'ug'}
```

- 1. Normalization and pretokenization applied
- 2. Our current set of strings is denoted at right (with corresponding frequencies)
- 3. Vocabulary representing all characters in this set
- 4. Add most common occurring pair of elements in current vocabulary
- 5. Repeat until desired vocab size

Other Tokenizers

WordPiece

$$score = (freq_of_pair)/(freq_of_first_element \times freq_of_second_element)$$

Unigram

$$P([``p",``u",``g"]) = P(``p") imes P(``u") imes P(``g") = rac{5}{210} imes rac{36}{210} imes rac{20}{210} = 0.000389$$

Embeddings

Types and tokens

Type: gopher

Token:

- The gopher is a resident of the dry plains.
- One day, while I was out chasing a gopher, I wandered off too far.
- It's not often a team loses with stats like this.
 Gophers played very well tonight.

"gopher"

3.2 0.0 0.0 0.1

Contextualization of word representations

Static or non-contextualized representations

Contextualized representations

Language models

Unigram LM:
$$p(w_1^N) = \prod_{n=1}^N p(w_n)$$

Bigram LM: $p(w_1^N) = \prod_{n=1}^N p(w_n|w_{n-1})$

Trigram LM: $p(w_1^N) = \prod_{n=1}^N p(w_n|w_{n-2}, w_{n-1})$

the black fox jumped for predict pre

Contextualized word representations

Transform the representation of a token in a sentence (e.g., from a static word embedding) to be sensitive to its local context in a sentence

Stacked Bidirectional RNN trained to predict next word in language modeling task

53 85 -1 53 85 -1 21 87 ; 21 87 ; like

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

Stacked Bidirectional RNN trained to predict

next word in language modeling task

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

Stacked Bidirectional RNN trained to predict next word in language modeling task

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

ELMo (Embeddings from Language Models)

- ☐ Big idea: (i) transform the representation of a word (e.g., from a static word embedding) to be sensitive to its local context in a sentence and (ii) optimized for a specific NLP task.
- ☐ Output = word representations that can be plugged into just about any architecture a word embedding can be used.

Recurrent Neural Network

RNN allow arbitrarily-sized conditioning contexts; condition on the entire sequence history.

											0.98
0	0.05	0.03	0.001	0.003	0.04	0.001	0.002	0.02	0.04	0.0001	
1	the	a	like	love	natural	language	go	vision	signed		<stop></stop>

Bidirectional RNN

Forward RNN

L layers

ELMo (Embeddings from Language Models)

Pre-training stage:

Train a Bi-RNN LM with L layers on unlabeled text corpora

Fine-tuning stage:

Fine-tune it for a specific task by combining RNN output across all layers

TASK	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)	
SQuAD	85.8	4.7 / 24.9%	
SNLI	88.7 ± 0.17	0.7 / 5.8%	
SRL	84.6	3.2 / 17.2%	
Coref	70.4	3.2 / 9.8%	
NER	92.22 ± 0.10	2.06 / 21%	
SST-5	54.7 ± 0.5	3.3 / 6.8%	

Types and tokens

Type: gopher 5.2 1.5 ... 0.2 0.6

Token:

- The gopher is a resident of the dry plains.
- One day, while I was out chasing a gopher, I wandered off too far.
- It's not often a team loses with stats like this.
 Gophers played very well tonight.

"gopher"

5.2 1.5		0.2	0.6
---------	--	-----	-----

3.2 8.5 0.6 8.1

-2.2	2.4	 5.2	3.4

Stacked Bidirectional RNN trained to predict next word in language modeling task

Transformer-based model to predict masked word using bidirectional context and next sentence prediction

Attention

Old Seq2Seq Implementation

The input context serves as a significant bottleneck. Most modern language models (transformers) implement some improvements upon this

We'll revisit this in the coming weeks now

Alleviating the bottleneck

Encoder has more channels to communicate over...

Alleviating the bottleneck

Encoder now has more channels to communicate over...

but all the context must follow the final hidden state of the encoder

Enter Attention

Enter Attention

- Attention allows each output element to focus on only the relevant parts of the input sequence
- There is no longer a hidden state bottleneck
 the model can focus on any hidden state in the input sequence

$$e_{ij} = a(s_{i-1}, h_j)$$

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$
 $s_i = f(s_{i-1}, y_{i-1}, c_i)$

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Attention Visualized

Attention vs Weights from fully-connected layer?

 \Box Fully-connected layer weights W are static w.r.t the input

 \square Attention scores a are dynamic w.r.t the input context

a

Examples from Sebastian Raschka

Attention

Neural Machine Translation by Jointly Learning to Align and Translate

Hierarchical Attention Networks for Document Classification

Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Self-Attention (Transformers)

BERT

☐ Transformer or self-attention based (Vaswani et al., 2017) masked language model using bidirectional context and next sentence prediction

☐ Generates multiple layers of representations for each token sensitive to its context use.

Classical (causal) language model

Consider only the left context to predict the next word (i.e., the final word in a sequence is masked)

Masked language model

Use any context (left or right) to predict a masked word

Each token in input starts represented by **token** and **position** embeddings

53 -1 0.5 2.1

Token 2, Layer 1

natural

The value for time step j at layer i is the result of attention over all time steps in the previous layer i-1

The value for time step j at layer i is the result of attention over all time steps in the previous layer i-1

At the end, we have one representation for each layer for each token

Input Length (T)

Tokenization in BERT

□ BERT uses WordPiece tokenization

■ Vocabulary size: 30,000

The	The
unwilling	un #will #ing
barked	bark #ed

□ BERT encodes each sentence by appending a special token to the beginning ([CLS]) and end ([SEP]) of each sequence

7

Training BERT

- ☐ #1: Masked language modeling
 - [Mask] one word from input and try to predict that word as output
 - Maximum length = 512

Input Length (T)= 512

Training BERT

- ☐ #1: Masked language modeling
 - [Mask] one word from input and try to predict that word as output
 - Maximum length = 512
 - Concatenate two sentences with [SEP] token
 - More powerful than Bidirectional-RNN LM

Training BERT

- ☐ #2: Next sentence prediction
 - For a pair of sentences, predict from [CLS] representation whether they appeared sequentially in the training data

Next=True [CLS] I like natural language processing [SEP] because NLP is fun Next=False [CLS] I like natural language processing [SEP] Minnesota is cold.

 This objective turns out to be not that effective, found in RoBERTa paper (Liu et al., 2019)

L_{MLM}

$L_{MLM} + L_{NSP}$

Details of BERT training

- Deep layers
 - 12 layers for BERT-base
 - 24 layers for BERT-large
- Large representation size (768 per layer)
- ☐ Pretrained on English Wikipedia (2.5B words) and BookCorpus (800M words)

 $L_{MLM} + L_{NSP}$

Coreference resolution with BERT

Other pretrained LMs

- BERT
- ☐ XLNet
- ALBERT
- RoBERTa
- Distilbert
- ☐ GPT-2/3
- Multilingual-BERT

https://huggingface.co/models

Summary

woman	king
5.2	1.5
0.5	0.4
-6.2	0.6

- ☐ Word embeddings can be substituted for one-hot encodings in many models (MLP, CNN, RNN, logistic regression).
- ☐ Bidirectional modeling in ELMo/BERT helps learn more context sensitive information.
- ☐ Attention gives us a mechanism to learn which parts of a sequence to pay attention to more in forming a representation of it.
- Static word embeddings (word2vec, Glove) provide representations of word types; contextualized word representations (ELMo, BERT) provide representations of tokens in context.

M