
CSCI 5541: Natural Language Processing
Lecture 7: Language Models: RNN, LSTM, and Seq2Seq

CSCI 5541 NLP 2

Announcement (0213)
❑ Minor HW2 Revisions --> See slack announcement
❑ HW3 is released. The due date is due Tue, Feb 25.
❑ Project

o Brainstorming is due next Tuesday, Feb 18
o Groups have been assigned in slack
o There are a couple of students not yet in groups. If you have a fully formed group

and are willing to take on someone else, let me know.

CSCI 5541 NLP 3

Ngram LM

Uni-gram Bi-gram

CSCI 5541 NLP 4

Sparsity in Ngram LM

CSCI 5541 NLP 5

Ngram LM vs Neural LM
To avoid the data sparsity

problem from the ngram LM

CSCI 5541 NLP 6

Neural LM
Simple feed-forward multilayer perceptron

(e.g., one hidden layer)

Bengio et al. 2003, A Neural Probabilistic Language Model

Concatenation (k x V)

H x V

One-hot encoding

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

Distributed representation

0.2

1.6
-4.2

0.2

1.6
-4.2

0.3

5.6
-2.2

2.3

2.6
-8.2

kV x H

Multi-class (Vocab)
classification

H x V

CSCI 5541 NLP 7

Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
(|x| = V)

Output space: |y| = V

kV

Distributed representation
(H)

CSCI 5541 NLP 8

Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
(|x| = V)

Distributed representation
(|y| = H)

V >> H

Represent high-dimensional words (and
contexts) as low-dimensional vectors

CSCI 5541 NLP 9

tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4

CSCI 5541 NLP 10

tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4

CSCI 5541 NLP 11

tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4

CSCI 5541 NLP 12

Neural LM against Ngram LM
Pros
❑ No sparsity problem
❑ Don’t need to store all observed n-gram counts

Cons
❑ Fixed context window is too small (larger window, larger W)

o Windows can never be large enough
❑ Different words are multiplied by completely different weights (W); no

symmetry in how the inputs are processed.

CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP 15

How do we make a better model?

?

CSCI 5541 NLP 16

More Params are Better

Better models have more weights

CSCI 5541 NLP 17

Increasing depth is more efficient than width

x h1 h2 yx y

h1

Model 2:

Model 1:

CSCI 5541 NLP 18

…but very deep models are harder to train

CSCI 5541 NLP 19

Why is this so challenging?
Forward Pass

Backward Pass

L(y, ො𝑦)

To update this

weight…

we have to

propagate

through all of

this

CSCI 5541 NLP 20

Analogy #1: A Game of Telephone

CSCI 5541 NLP 21

Analogy #2: A funnel of information

Inputs

Layer 1

weights

Layer 1

outputs

Layer 2

weights

Layer 2

outputs

Layer 3

weights

Outputs

CSCI 5541 NLP 22

Linearization and Det-Bottlenecking
❑ Linearization →We need a better

way to reduce the number of
operations performed between our
weights and our loss function
(Residual connections)

❑ De-Bottlenecking →We need a
better way to ensure we are not
bottlenecking any representations
into some channel which is too small
to contain all the information we
need (Attention mechanism → later)

CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP 24

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts;
condition on the entire sequence history.

Goldberg 2017

=

CSCI 5541 NLP 25

Recurrent Neural Network

Goldberg 2017

Neural-LM:

RNN:

CSCI 5541 NLP 26

Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋𝑖 (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed

representation of input token at 𝑖 step

CSCI 5541 NLP 27

Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋𝑖 (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed

representation of input token at 𝑖 step

❑ 𝑆𝑖−1 (the output of the previous state):
o Base case: 𝑆0 = 0 vector

CSCI 5541 NLP 28

Recurrent Neural Network

❑ Each time set has two outputs:

❑ 𝑆𝑖 = 𝑅 (𝑋𝑖 , 𝑆𝑖−1)
o R computes the output state as a function

of the current input and previous state

❑ 𝑦𝑖 = 𝑂 (𝑆𝑖)
o O computes the output as a function of

the current output state

CSCI 5541 NLP 29

RNN Training

sequence of
words

output as
shifted by one

CSCI 5541 NLP 30

RNN Training SUM (total loss)

sequence of
words

output as
shifted by one

CSCI 5541 NLP 31

RNN Training Parameters are shared!
Derivatives are accumulated.

sequence of
words

output as
shifted by one

CSCI 5541 NLP

What can RNNs do?
❑ Represent a sentence

o Read whole sentence, make a prediction

❑ Represent a context within a sentence
o Read context up until that point

CSCI 5541 NLP

Representing Sentences
❑ Sentence classification
❑ Conditioned generation

CSCI 5541 NLP

Representing Context within Sentence
❑ Tagging
❑ Language modeling

CSCI 5541 NLP

e.g., Language Modeling
❑ Language modeling is like a tagging task, where each tag is the next word!

CSCI 5541 NLP

e.g., POS Tagging with Bi-RNNs

CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP

Vanishing Gradient
❑ Gradients decrease as they get pushed back

❑ Why? “Squashed” by non-linearities or small weights in matrices

CSCI 5541 NLP

A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)

CSCI 5541 NLP

RNN Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

LSTM Structure
❑ Forget gate: what value do we try to

add/forget to the memory cell?
❑ Input gate: how much of the update

do we allow to go through?
❑ Output gate: how much of the cell do

we reflect in the next state?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Forget gate

Input gate Output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

LSTM variant: Gated Recurrent Unit (GRU)
❑ Combines the forget and input gates into a

single “update gate.”
❑ Merges the cell state and hidden state
❑ And, other small changes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(Cho et al., 2014)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

Most Important Takeaway
❑ The Cell State is an information

highway
❑ Gradient can flow over this

without nearly as many issues of
vanishing/exploding gradients that
we saw in RNNs

❑ We are doing a better job at
reducing the ‘distance’ between
our loss function and each
individual parameter

CSCI 5541 NLP

A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)

CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP 48

class RNN(nn.Module):
def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:

super().__init__()
…
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)

def forward(self, x, hidden_state) :
x = self.i2h(x)
hidden_state = self.h2h(hidden_state)
hidden_state = torch.tanh(x + hidden_state)
out = self.h2o(hidden_state)
return out, hidden_state

CSCI 5541 NLP 49

class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):

super(RNN, self).__init__()
…
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):
r_out, hidden = self.rnn(x, hidden)
r_out = r_out.view(-1, self.hidden_dim)

return self.fc(r_out) , hidden
x (batch_size, seq_length, input_size)
hidden (n_layers, batch_size, hidden_dim)
r_out (batch_size, time_step, hidden_size)

CSCI 5541 NLP 50

class LSTM (nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers,

seq_length):
super(LSTM1, self).__init__()
…
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,

num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()

def forward(self,x):
h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
output, (hn, cn) = self.lstm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden_size)
return self.fc (self.relu(hn))

CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP 52

Connecting RNN to RNN
for sequence-to-sequence (seq2seq)

modeling

CSCI 5541 NLP 53

RNN (decoder) for language modeling
Randomly initialized hidden
state ℎ𝑡 at time step 𝑡 = 0

CSCI 5541 NLP 54

RNN (decoder) for language modeling
What if we encode some
specific context, instead
of random state?

CSCI 5541 NLP 55

RNN (encoder) - RNN (decoder)
for machine translation

“나는이영화가싫어요”
“Odio esta película”

CSCI 5541 NLP 56

RNN (encoder) - RNN (decoder)
for dialogue generation

“나는이영화가싫어요”
“Odio esta película”

“what do you think about
Avengers: Endgame?

CSCI 5541 NLP 57

RNN (encoder) - RNN (decoder)
for question answering

“나는이영화가싫어요”
“Odio esta película”

“what do you think about
Avengers: Endgame?

When is the film made? This film is made in 1997

This film is made in 1997<s>

CSCI 5541 NLP 58

Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think ..?

Encoder: encoding
input sequence

When is the film made?

CSCI 5541 NLP 59

Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think ..?

Encoder: encoding
input sequence

Decoder: decoding
output sequenceInput context

When is the film made?

CSCI 5541 NLP 60

Problem: forgetting input context as
input gets longer

Input context

“나는이영화가싫어요”
“what do you think ..? When is the film made?

CSCI 5541 NLP 61

Solution (teaser): Seq2seq with attention

Attention layer = Input context
attended on all previous context
(will be covered more in Transformer)

“나는이영화가싫어요”
“what do you think ..? When is the film made?

CSCI 5541 NLP 62

State-of-the-art Language Models

CSCI 5541 NLP 63

Teaser: Transformer-based LMs
❑ SOTA LMs: GPT-2, Radford et al. 2018; GPT-3,

Brown et al. 2020

Trigram LSTM
109 58.3

GPT-2 GPT-3
35.8 20.5

CSCI 5541 NLP 64

Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

Pe
rp

lex
ity

CSCI 5541 NLP 65

Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

Pe
rp

lex
ity

CSCI 5541 NLP 66

Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

ELMo GPT BERT GPT2 GPT3

Pe
rp

lex
ity

CSCI 5541 NLP 67

Teaser: Two Objectives for Language Model Pretraining

Slides from Zihang Dai

Next-token prediction Reconstruct masked tokens

Auto-regressive LM (GPT3) Denoising autoencoding (BERT)
ELMo BERTGPT GPT2 GPT3

CSCI 5541 NLP 68

Why better language models are useful?

CSCI 5541 NLP 69

The director of 2001: A Space Odyssey is _____________

Language models can directly encode knowledge
present in the training corpus.

CSCI 5541 NLP 70

Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)

CSCI 5541 NLP 71

Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)

CSCI 5541 NLP 72

Language models can be a foundation for various
tasks across different modalities

Bommasani et al. (2021), "On the Opportunities and Risks of Foundation Models”

CSCI 5541 NLP 73

Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”

	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2: Announcement (0213)
	Slide 3: Ngram LM
	Slide 4: Sparsity in Ngram LM
	Slide 5
	Slide 6: Neural LM
	Slide 7: Neural LM
	Slide 8: Neural LM
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Neural LM against Ngram LM
	Slide 13: Outline
	Slide 14: Outline
	Slide 15: How do we make a better model?
	Slide 16: More Params are Better
	Slide 17: Increasing depth is more efficient than width
	Slide 18: …but very deep models are harder to train
	Slide 19: Why is this so challenging?
	Slide 20: Analogy #1: A Game of Telephone
	Slide 21: Analogy #2: A funnel of information
	Slide 22: Linearization and Det-Bottlenecking
	Slide 23: Outline
	Slide 24: Recurrent Neural Network (RNN)
	Slide 25: Recurrent Neural Network
	Slide 26: Recurrent Neural Network
	Slide 27: Recurrent Neural Network
	Slide 28: Recurrent Neural Network
	Slide 29: RNN Training
	Slide 30: RNN Training
	Slide 31: RNN Training
	Slide 32: What can RNNs do?
	Slide 33: Representing Sentences
	Slide 34: Representing Context within Sentence
	Slide 35: e.g., Language Modeling
	Slide 36: e.g., POS Tagging with Bi-RNNs
	Slide 37: Outline
	Slide 38: Vanishing Gradient
	Slide 39: A Solution: Long Short-term Memory (LSTM)
	Slide 40: RNN Structure
	Slide 41: RNN vs LSTM Structure
	Slide 42: RNN vs LSTM Structure
	Slide 43: LSTM Structure
	Slide 44: LSTM variant: Gated Recurrent Unit (GRU)
	Slide 45: Most Important Takeaway
	Slide 46: A Solution: Long Short-term Memory (LSTM)
	Slide 47: Outline
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Outline
	Slide 52
	Slide 53: RNN (decoder) for language modeling
	Slide 54: RNN (decoder) for language modeling
	Slide 55: RNN (encoder) - RNN (decoder) for machine translation
	Slide 56: RNN (encoder) - RNN (decoder) for dialogue generation
	Slide 57: RNN (encoder) - RNN (decoder) for question answering
	Slide 58: Sequence-to-sequence modeling using RNN (encoder) - RNN (decoder)
	Slide 59: Sequence-to-sequence modeling using RNN (encoder) - RNN (decoder)
	Slide 60: Problem: forgetting input context as input gets longer
	Slide 61: Solution (teaser): Seq2seq with attention
	Slide 62
	Slide 63: Teaser: Transformer-based LMs
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Teaser: Two Objectives for Language Model Pretraining
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

