CSCI5541: Natural Language Processing

Lecture 7: Language Models: RNN, LSTM, and Seq2Seq
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Announcement (0213)

A Minor HW?2 Revisions --> See slack announcement
d HW3 is released. The due date is due Tue, Feb 25.

1 Project
o Brainstorming is due next Tuesday, Feb 18
o Groups have been assigned in slack

o There are a couple of students not yet in groups. If you have a fully formed group
and are willing to take on someone else, let me know.
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Ngram LM

Uni-gram
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Sparsity in Ngram LM o

o 81 02 03 G4 OF O

I S —
i want to eat chinese food Ilunch spend ( )

i 5 827 0 9 0 0 0 2 C\W;_1,W; cl . W ¥

wat 2 0 608 1 6 6 5 1 ("’ 1 )" (wi—1,wi) +

to 2 0 4 686 2 0 6 211 C W'_l clw: V&

eat 0 0 2 0 16 2 42 0 y ( -1 ) +

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0
Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau- P(w; | wi—2,wi—1) = MP(w; | wi—2,wi—1)
rant Project corpus of 9332 sentences. Zero counts are in gray.

+ }kgp(ﬂii | tﬂ,;_l)
Ap+(1—XN)g + AP (w;)
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Ngram LM vs Neural LM

To avoid the data sparsity
problem from the ngram LM
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Neural LM o

Simple feed-forward multilayer perceptron

x = [v(wy); ... v(wy)] (e.g., one hidden layer)
Concatenation (k x V) 1]
1 .
v(iwy) o] .
0 |
w; = tried o] ||
v(w 1] ;
o] N
w3 = prepare 0] 1
_ viwz) [0 |
w, = midterms — .0
— h =g(xW; + b4) f—
V(wy) ﬁ -8.2 :
0 26
1)
One-hot encoding Distributed representation Multi-class (Vocab)

classification

Bengio etal. 2003, A Neural Probabilistic Language Model
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®
N
N eu ral LM P(w) = P(wi|wj_k..w;j—1) = softmax (W - h) @b{b

W, e R*" W, ¢ RFIXY

| by € R” b € RY
One-hot encoding Output space: |y| =V
(Ix|=V)
Distributed representation
(H)
h =gxWs +by)
X = [v(wq);...;v(wg)] y = softmax(hWa + b»)

Bengio etal. 2003, A Neural Probabilistic Language Model
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P
Neural LM o

Represent high-dimensional words (ana
contexts) as low-dimensional vectors

One-hot encoding
(Ix|=V)

Distributed representation
(ly[=H)

Bengio etal. 2003, A Neural Probabilistic Language Model
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Conditioning context (X [k x V/])

tried to prepare midterm{put | was too tired of...

Next word to predict (Y)

Context window size: k=4
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Conditioning context (X [k x V/])

tried to prepare midterm but|l{was too tired of...

Next word to predict (Y)

Context window size: k=4
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Conditioning context (X [k x VV])

tried t

Context window size: k=4

D prepare midterm but |

was oo tired of...

Next word to predict (Y)



Neural LM against Ngram LM o

Pros
3 No sparsity problem
A Don't need to store all observed n-gram counts

Cons

a Fixed context window is too small (larger window, larger W)
o Windows can never be large enough

a Different words are multiplied by completely different weights (W); no
symmetry in how the inputs are processed.
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Outline

_inearization: A general heuristic for model improvement
Recurrent Neural Network (RNN)

_ong Short-term Memory (LSTM)

A Implementation of RNN and LSTM using PyTorch
 Sequence-to-Sequence modeling

A Teaser: Transformer-based LMs

Iy

4 Why language models are useful?
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Outline

 Linearization: A general heuristic for model improvement
 Recurrent Neural Network (RNN)

 Long Short-term Memory (LSTM)

A Implementation of RNN and LSTM using PyTorch
 Sequence-to-Sequence modeling

A Teaser: Transformer-based LMs

4 Why language models are useful?
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How do we make a better model?

?

CSCI 5541 NLP




More Params are Better

:ﬁ-q: Better models have more weights
-@' .ﬁi
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Increasing depth is more efficient than width
Model 1:

Model 2: &
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...but very deep models are harder to train

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

N = Y
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Figure 12.2 Deep network architecture with multiple layers.
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Why is this so challenging?

Forward Pass Deep Neural Network

—
input layer hidden layer 1 hidden layer 2 hidden layer 3

) O O

put layer

To update this

?’\‘

weight... & a
we have to “ “ (v, ¥)

propagate ‘.‘ .Q‘

through all of ’Q‘ e‘

this e A/

A Y

Figure 12.2 Deep network architecture with multiple layers. Backward Pass
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Analogy #1: A Game of Telephone

fleas?
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Analogy #2: A funnel of information

Layer 1 Layer 2
Inputs outputs outputs
Outputs
Layer 1 Layer 2 Layer 3 I
weights weights weights

CSCI 5541 NLP




Linearization and Det-Bottlenecking

 Linearization - We need a better weight layer
way to reduce the number of Fx) _yrel
operations performed between our e
weights and our loss function
(Residual connections)

1 De-Bottlenecking - We need a
petter way to ensure we are not
pottlenecking any representations
Into some channel which is too small
to contain all the information we v ok o
need (Attention mechanism = later)

X
identity
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Outline

A Linearization: A general heuristic for model improvement
1 Recurrent Neural Network (RNN)

 Long Short-term Memory (LSTM)

A Implementation of RNN and LSTM using PyTorch
 Sequence-to-Sequence modeling

A Teaser: Transformer-based LMs

4 Why language models are useful?
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Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts;
condition on the entire sequence history.

y Y4 ys
A A A
—- R} O J - so > S3> R) O S4> R’ O = SS
A ' - A
X X4 X5

Goldberg 2017

2t AR
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Recurrent Neural Network

Neural-LM: P(w) = P(w;|wij_g..w;j—1) = softmax (W - h)

1 | RNN: P(w) = P(w;|context)
= softmax (W - h;)

Goldberg 2017
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Recurrent Neural Network

A Each time set has two inputs: y1
A

A X; (the observation at time step i): % - ‘

o One-hot vector, feature vector, or distributed
representation of input token at i step *

CSCI 5541 NLP




Recurrent Neural Network

A Each time set has two inputs: y1
A
1 X; (the observation at time step i): S% y‘ 51
I 80 y R
o One-hot vector, feature vector, or distributed -~--' | J
representation of input token at i step *

X1

1 S;_, (the output of the previous state):
o Base case: S, = 0 vector
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Recurrent Neural Network

d Each time set has two outputs:

4S5 =R (Xi’Si_l)
o R computes the output state as a function
oiXhe current input and previous state

dy; =0 (S5;)
o O computes the output as a function of
the current output state
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RNN Training

output as </s>
shifted by one A
predict ( predict predict ( predict "~ predict
A A A A A
y1 y2 y3 Y4 ys
_ %, RO Hi» Ro H2. Ro H3B+ RO H*] RO
% | T F A T N
sequence of
E <s> E e E | E E s
words [<s>] [2be] ‘ [black] [fox] iumped|
<s5> > the > black > fox > jumped
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RNN Training

SUM (total loss)

output as the - black fox - jumped </s>
shifted by one A A A A A
pf;&iét ( p»r;c]iét: ‘ p}EJiét ,, , p};&iét | pf;c_iict
A A A A A
N Y2 Y3 Y4 Y5
— 80,1 RO H2» RO H2- RO H 3> RO H % RO
| TE A B A
sequence of
E<5> \ E e E E E —
words [<s>] [2he] ‘ [black] [fox] liumped|
<s5> > the > black > fox > jumped
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RNN Training

Parameters are shared!
Derivatives are accumulated.

output as
shifted by one

sequence of
words
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What can RNNs do?

1 Represent a sentence
o Read whole sentence, make a prediction

1 Represent a context within a sentence
o Read context up until that point

CSCI 5541 NLP m



Representing Sentences

J Sentence classification
] Conditioned generation

hate this movie

\/
prediction

CSCI 5541 NLP m



Representing Context within Sentence

] Tagging
] Language modeling

this movie

[preductj (predlct] Cpredlct] [predlct)

/abel Iabel /abe/ /abe/
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e.g., Language Modeling
J Language modeling is like a tagging task, where each tag is the next word!

<S> | hate this movie

l l

RNN RNN

[predmt] [predlct) [preduct) [predlct) [predlct)

hate thls mowe </s>
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e.g., POS Tagging with Bi-RNNs

I hate this movie

o~ o~ o~ o~
L | Lo | L2 | L |
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Outline

A Linearization: A general heuristic for model improvement
 Recurrent Neural Network (RNN)

 Long Short-term Memory (LSTM)

A Implementation of RNN and LSTM using PyTorch
 Sequence-to-Sequence modeling

A Teaser: Transformer-based LMs

4 Why language models are useful?
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\/anishing Gradient

Q Gradients decrease as they get pushed back

dl dl
—= —=small —=med. —
d, d sma d me d,

LN £\ £\ L)

h, —{RNN = h, = RNN | h, > RNN | h, | square_err —>/

3 3 3 4
1 X, X, y*

tiny =large

A Why? “Squashed” by non-linearities or small weights in matrices
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A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

1 Make additive connections between time steps
A Addition does not modify the gradient, no vanishing

1 Gates to control the information flow

CSCI 5541 NLP m



RNN Structure

b

y1
A
/
| »
So—:-‘ R, O —>
) si=R(xy8i-1) X1

yi = O (si)

)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN vs LSTM Structure

@ R (Xj,8i-1 ) ® Xj®= Sj_1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LST M S t r u C t u r e Neural Network Pujrgsa E >-’ _<

Layer Operation  Transfer Concatenate Copy

] Forget gate: what value do we try to @
add/forget to the memory cell?

J Input gate: how much of the update
do we allow to go through?

] Output gate: how much of the cell do
we reflect in the next state?

Forget gate

Cell state

AW, ) ) Input gate Output gate
hi = o o o (ct) @

CSCI 5541 NLP
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM variant: Gated Recurrent Unit (GRU)

(Cho etal, 2014)

] Combines the forget and input gates into a
single "update gate.”
1 Merges the cell state and hidden state

1 And, other small changes

2t = O’Q(szt + Uzht_l + bz)
ry = Og(Wr.’IIt + Urht_l + br)
he = (1 — 2t){o ht—1 +@0 on(Whay + Un(re 0 hy-1) + br)

Additive or Non-linear

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Most Important Takeaway

 The Cell State is an information
highway

1 Gradient can flow over this
without nearly as many issues of
vanishing/exploding gradients that
we saw in RNNs

1 We are doing a better job at
reducing the ‘distance’ between
our loss function and each
iIndividual parameter

CSCI 5541 NLP




A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

1 Make additive connections between time steps
A Addition does not modify the gradient, no vanishing

1 Gates to control the information flow
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Outline

A Linearization: A general heuristic for model improvement
 Recurrent Neural Network (RNN)

 Long Short-term Memory (LSTM)

1 Implementation of RNN and LSTM using PyTorch

 Sequence-to-Sequence modeling
 Teaser: Transformer-based LMs
4 Why language models are useful?
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O PyTorch
class RNN(nn.Module):

def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:
super()._ _init__{()

self.i2h = nn.Linear(input _size, hidden_size, bias=False) @
self.n2h = nn.Linear(hidden _size, hidden _size) T

self.h20 = nn.Linear(hidden_size, output_size) G
* 5
def forward(self, x, hidden _state) : l

J

x = self.i2h(x) | 4
hidden_state = self.h2h(hidden_state) _s; = R (Xi, Si—1 ) J
hidden_state = torch.tanh(x + hidden_state)

out = self.h2o(hidden _state) g yi =0 (Si) @

return out, hidden _state

CSCI 5541 NLP




class RNN(nn.Module): O PyTorch
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(RNN, self)._ _init_ ()

self.rnn = nn.RNN(input_size, hidden _dim, n_layers, batch_first=True) @
self.fc = nn.Linear(hidden _dim, output_size) JT
»

&
o
def forward(self, x, hidden): l
|

4

r_out, hidden = self.rnn(x, hidden) si = R (Xj,8i-1)
r_out = r_out.view(-1, self.hidden_dim)

\

©

# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
#r_out (batch_size, time_ step, hidden_size)

return self.fc(r_out), hidden yi = O (s¢)

CSCI 5541 NLP




class LSTM (nn.Module): O PyTorch
def __init_ _(self, num_classes, input_size, hidden_size, num_layers,
seq_length):

hy
.Sj.UPer(LSTM’I, self). _ _init_ () e : . \L
self.Istm = nn.LSTM(input _size=input _size, hidden_size=hidden_size, B

num_layers=num_layers, batch _first=True) )z Lh
self.fc = nn.Linear(hidden _size, num_classes) e .
self.relu = nn.ReLU() P
def forward(self,x):

h_0 = Variable(torch.zeros(self.num _layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(self.num _layers, x.size(0), self.hidden_size))
output, (hn, cn) = self.Istm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden _size) fi = o,(Wszy +Ughy 1 + by)
return self.fc (self.relu(hn)) it = og(Wimy + Uihy 1 + b;)

0y = JQ(WGI'E = Uﬂht_l == bﬂ)
¢t = froe_1 +ip oo (Wezy + Ushy—y + be)
h“t =y O r:l'h(fff)

CSCI 5541 NLP
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Outline

_inearization: A general heuristic for model improvement
Recurrent Neural Network (RNN)

_ong Short-term Memory (LSTM)

A Implementation of RNN and LSTM using PyTorch

] Sequence-to-Sequence modeling

A Teaser: Transformer-based LMs

Iy

4 Why language models are useful?
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Connecting RNN to RNN
for sequence-to-sequence (seq2seq)
modeling




RNN (decoder) for language modeling

Randomly initialized hidden
state h; attimestept =0

<S> | hate this movie
| l |
RNN RNN RNN &

[predlct] [preduct] [predlct] [predlct) [predlct]

hate thIS mowe </s>

CSCI 5541 NLP



RNN (decoder) for language modeling

What if we encode some
specific context, instead
of random state?
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RNN (encoder) - RNN (decoder)
for machine translation

‘LHE 0] @317t of e

“"Odio esta pelicula” \
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RNN (encoder) - RNN (decoder)
for dialogue generation

"Lt= O] 7t &0 K"
“Odio esta pelicula” <S> I hate this movie

B, (T £ ¢ B T 55, YN
RA T D AVAN A W A A A
) ~

“what do you think about
Avengers: Endgame?

l hate this movie <[s>
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RNN (encoder) - RNN (decoder)
for question answering

"LH= 0] G387t 4lof e
“Odio esta pelicula”

<S> This film is made in 1997

“what do you think about
Avengers: Endgame?

When is the film made? o _
This film is made in 1997

CSCI 5541 NLP




Sequence-to-sequence modeling using
RNN (encoder) - (decoder)

LHE 0 @317t 4loj "

~what do you think ..?
When is the fiJm made”

Encoder: encoding
Input sequence
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Sequence-to-sequence modeling using
RNN (encoder (decoder)

LHE 0 @317t 4loj "

hat do you think ..?
When is the fiJm made”

Encoder: encoding Decoder: decoding

Input sequence Input context output sequence

CSCI 5541 NLP




Problem: forgetting input context as
input gets longer

"Lt= Ol et &0 K"
“what do you think ..?  When is the film made? %

|nput ContEXt ——small ——med —=large
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Solution (teaser): Seqg2seq with attention

"Lt= 0| A7l &l
“what do you think ..?  When is the film made? %

Attention layer = Input context
attended on all previous context
(will be covered more in Transformer)

61
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State-of-the-art Language Models
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Teaser: Transformer-based LMs

Probabilities

1 SOTA LMs: GPT-2, Radford et al. 2018; GPT-3, g
Brown et al. 2020 M;ﬁo«

Linear

i

I

~ B Add & Norm
. __Md & Norm
_ _ Multi-Head
Trigram LSTM GPT-2 GPT-3 Food Attertion
Forward J ) Nx
109 58.3 35.8 20.5 o i
f‘" Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
S —— J \_ pr—)
Positional A Positional
Encoding ¢ Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.
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Perplexity

Ngram
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Perplexity

Ngram

LSTM

RNN
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1990s 1997

2003

D TR T

E
‘NETS
1970
ATION

3
FUKUSHIMA 1979
F. F. COPPOLA 1972
THE GODFATHER |
— 2P LEARNING
O ONSPIRACY
F . COPPOLA 1990
THE GODFATHER 111

tcNN ARCHITECTURE
1
’ A

TURING 1948
| rRNN EVOLUTION

BACKPROPAG

LEIBNIZ 1676
THE CHAIN RULE

LINNAINMA

FOR NEURAL

GAUSS & LEGENDR
LINEAR NEURAL

1990-2010: GENERATIVE
ADVERSARIAL NETWORKS
& ARTIFICIAL CURIOSITY

Ni991.- DISTILLING
EURAL NETWORKS

ssssss

Jirgen Schmidhuber Al Blog
Pronounce: You_again Shmidhoobuh Twitter: @SchmidhuberAl
Technical Report IDSIA-23-23, IDSIA 14 December 2023

How 3 Turing Awardees Republished Key Methods and Ideas
Whose Creators They Failed to Credit

This write-up is meant to correct an inaccurate history of Artificial Intelligence (Al) propagated by recent
uninformed news articles, posts in social media, and a large language model. Most of its statements are
taken from a less streamlined report™ that has been reviewed on relevant Al mailing lists, profiting from
feedback by many experts and well-known Al pioneers. The piece is aimed at people who are not aware
of the numerous Al priority disputes, but are willing to check the facts.




;2@

B O

Ngram g e
Z O " LT
3 LSTM e
g RNN
‘ ‘ GRU
ELMo
O O GPT  BERT GPT2 S
® o0,
1990s 1997 2003 2014 2018 2019 2020 2021
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Teaser: Two Objectives for Language Model Pretraining

GPT GPT2 GPT3 ELMo BERT

Auto-regressive LM(GPT3) @ @ @ Denoising autoencoding (BERT) @ @
York is a city [EOS] York is

1t t 1

Unidirectional Transformer Bidirectional Transformer
New  York is a city New |MASK]||[MASK| a city

log p(x Zlogp ze|X<t) log p(X[%) = Zmaskt log p(x:|X)

t=1
Next-token prediction Reconstruct masked tokens

Slides from Zihang Dai

67 S\
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Why better language models are useful?
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Language models can directly encode knowledge
present in the training corpus.

The director of 2001: A Space Odyssey is

CSCI 5541 NLP




Language models can directly encode knowledge
present in the training corpus.

Query Answer Generation

Francesco Bartolomeo Conti was born in . Florence Rome [-1.8], Florence [-1.8], Naples
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Language models can directly encode knowledge
present in the training corpus.

Query Answer Generation

Francesco Bartolomeo Conti was bornin . Florence Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam diedin . Paris Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of dog dogs [-0.3], breeds [-2.2], dog

The official language of Mauritiusis . English English [-0.6], French [-0.9], Arabic
Patrick Oboya playsin __ position. midfielder  centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after Hamburg Hess [-7.0], Hermann [-7.1], Schmidt

CSCI 5541 NLP
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Language models can be a foundation for various
tasks across different modalities

Tasks
Question 7
& Answering ° .
Data 4 Sentiment

% .+ Analysis
N /‘

Text I | ! i _
i ) “‘@ % Information C_,/
J s s i’) Extraction \
Adaptation '

Speach =."'\,_l’U\/\ ty Training Foundation ». Image
4 “ Model & Captioning 4‘/
~ Structured
. Data
= INA gbmt
30 Signals quroe % * ecognition

Instruction
Following .. - "‘

\}
Bommasani et al. (2021), "On the Opportunities and Risks of Foun dat%odels” ot Py




Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?"
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