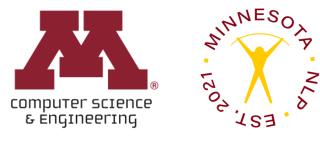
CSCI 5541: Natural Language Processing

Lecture 7: Language Models: RNN, LSTM, and Seq2Seq



Announcement (0213)

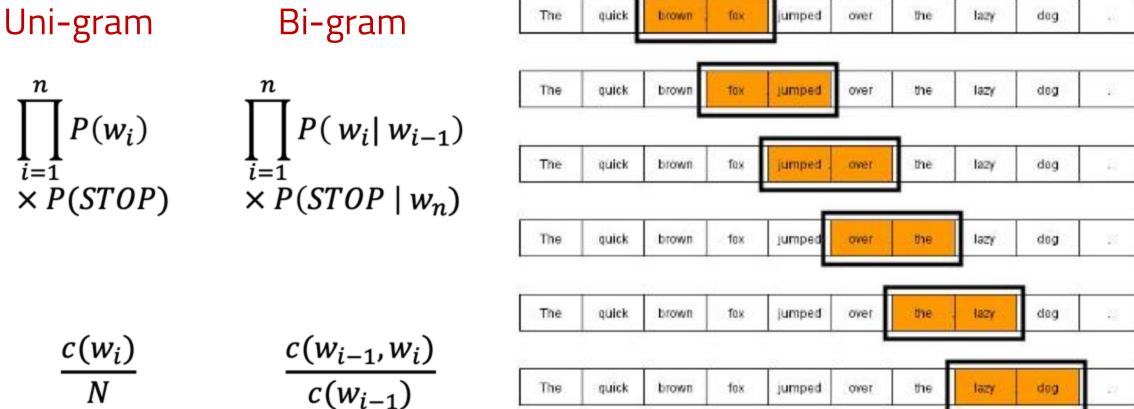
- □ Minor HW2 Revisions --> See slack announcement
- □ HW3 is released. The due date is due Tue, Feb 25.

Project

- o Brainstorming is due next Tuesday, Feb 18
- o Groups have been assigned in slack
- There are a couple of students not yet in groups. If you have a fully formed group and are willing to take on someone else, let me know.

CSCI 5541 NLP

The	quick	brown	fox	jumped	over	the	lazy	deg	
					Ľ			9	
The	quick	brown	fox	jumped	over	the	lazy	dog	1



Sparsity in Ngram LM

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

$$\frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \longrightarrow \frac{c(w_{i-1}, w_i) + \alpha}{c(w_{i-1}) + V\alpha}$$

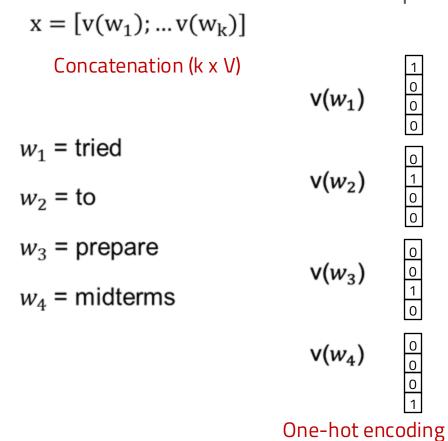
2

$$P(w_{i} | w_{i-2}, w_{i-1}) = \lambda_{1} P(w_{i} | w_{i-2}, w_{i-1}) \\ + \lambda_{2} P(w_{i} | w_{i-1}) \\ + \lambda_{3} P(w_{i})$$

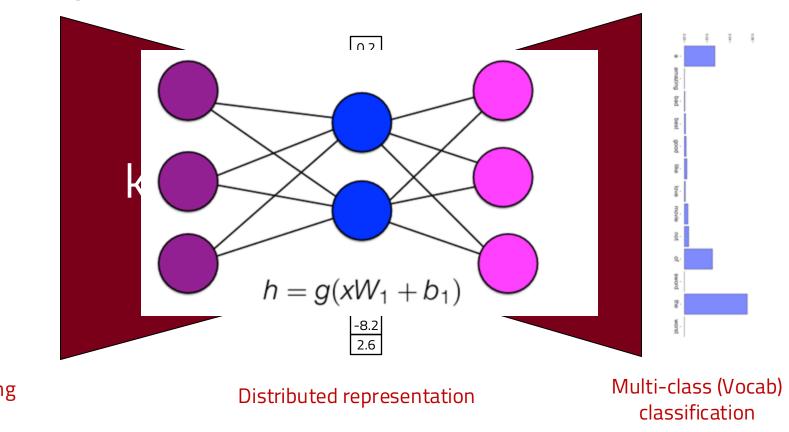
Ngram LM vs Neural LM

To avoid the data sparsity problem from the ngram LM

Neural LM

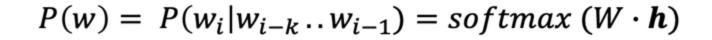


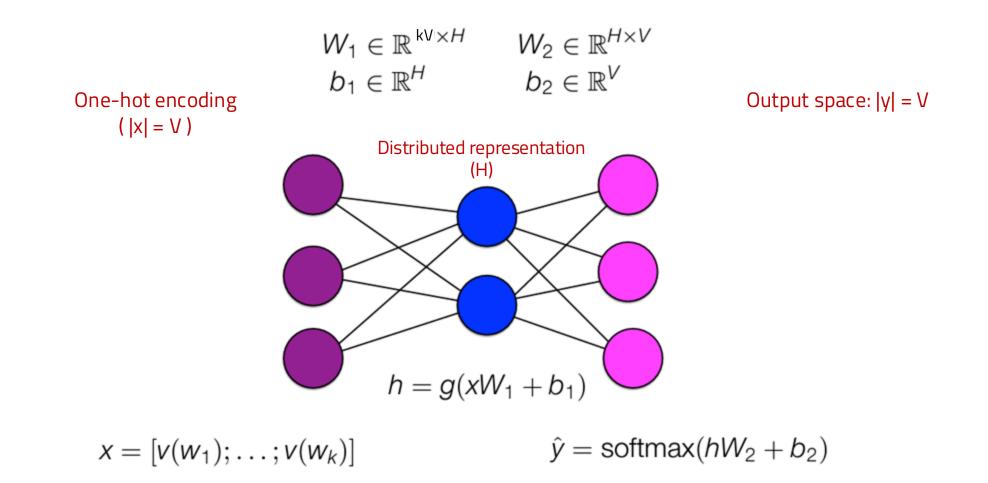
Simple feed-forward multilayer perceptron (e.g., one hidden layer)



Bengio et al. 2003, A Neural Probabilistic Language Model

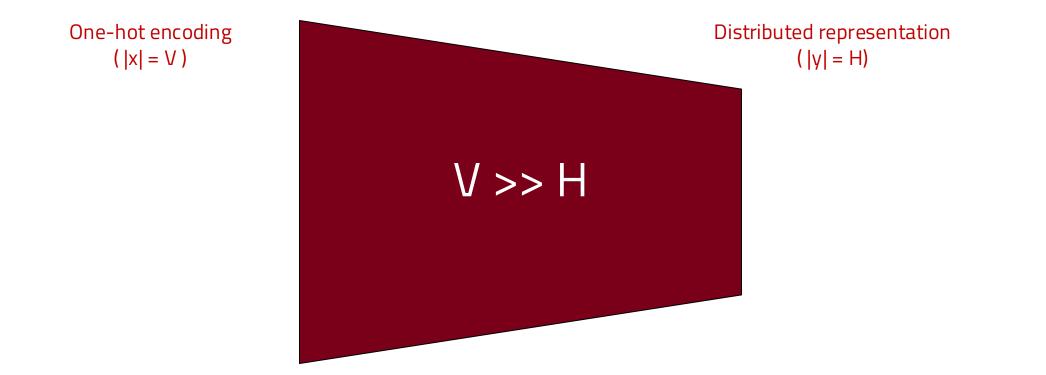
Neural LM





Neural LM

Represent high-dimensional words (and contexts) as low-dimensional vectors



Conditioning context (X [k x V])

tried to prepare midterm but I was too tired of...

Next word to predict (Y)

Context window size: k=4

Conditioning context (X [k x V])

trie<mark>d to prepare midterm but I</mark> was too tired of...

Next word to predict (Y)

Context window size: k=4

Conditioning context (X [k x V])

tried t<mark>o prepare midterm but I was</mark> too tired of...

Next word to predict (Y)

Context window size: k=4

CSCI 5541 NLP

Neural LM against Ngram LM

Pros

- No sparsity problem
- Don't need to store all observed n-gram counts

Cons

- □ Fixed context window is too small (larger window, larger W)
 - o Windows can never be large enough
- Different words are multiplied by completely different weights (W); no symmetry in how the inputs are processed.

Outline

Linearization: A general heuristic for model improvement

- Recurrent Neural Network (RNN)
- □ Long Short-term Memory (LSTM)
- Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

Outline

Linearization: A general heuristic for model improvement

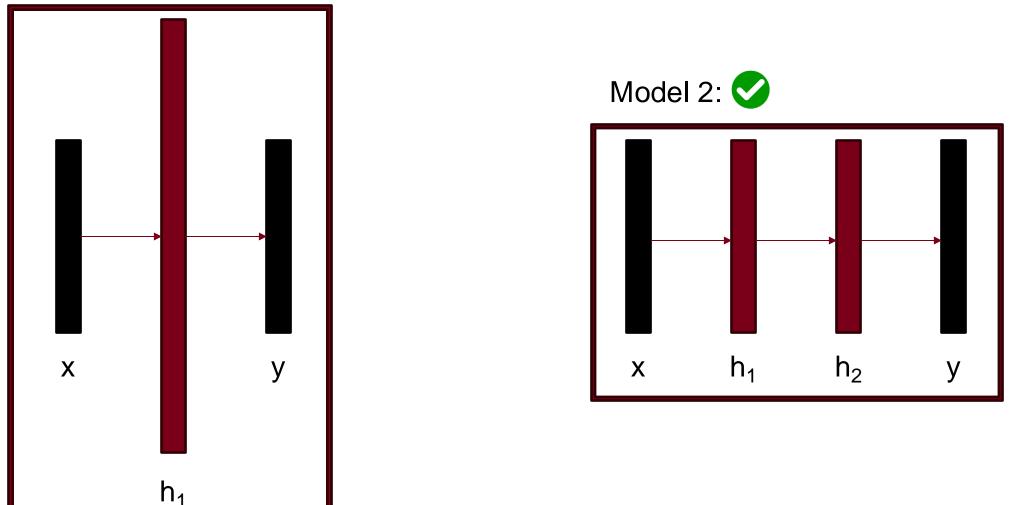
- Recurrent Neural Network (RNN)
- Long Short-term Memory (LSTM)
- Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

How do we make a better model?

More Params are Better

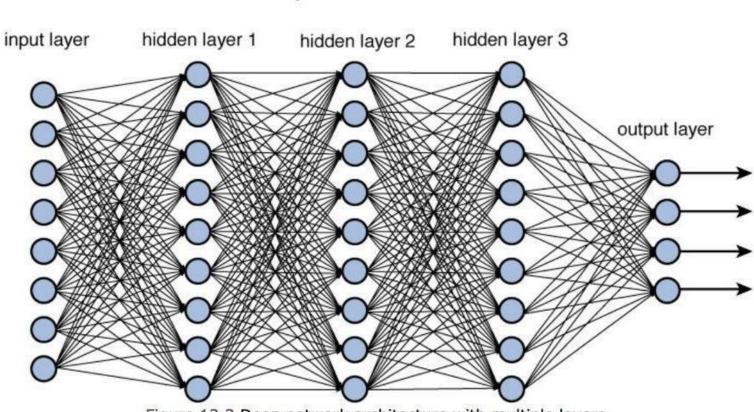
Better models have more weights

Increasing depth is more efficient than width



CSCI 5541 NLP

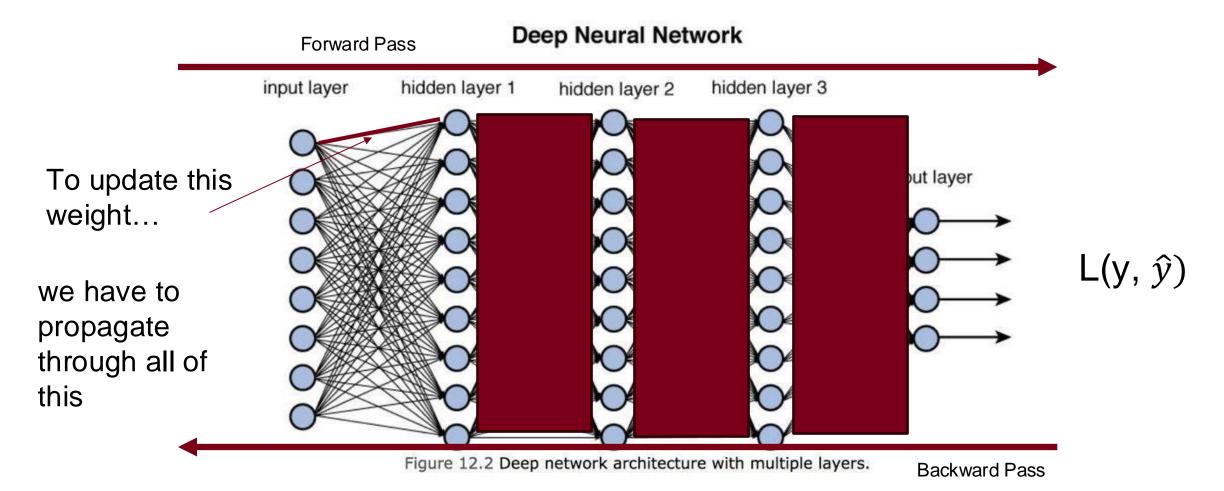
...but very deep models are harder to train



Deep Neural Network

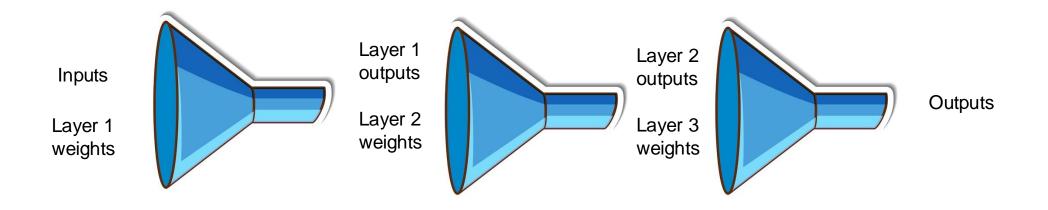
Figure 12.2 Deep network architecture with multiple layers.

Why is this so challenging?



Analogy #1: A Game of Telephone

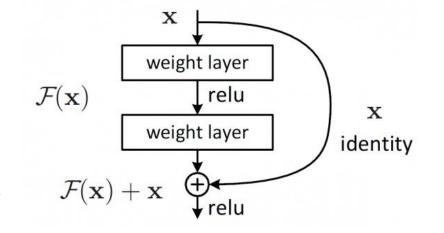
Analogy #2: A funnel of information

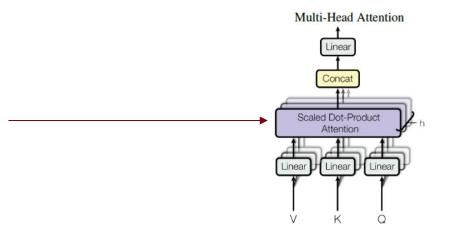


Linearization and Det-Bottlenecking

❑ Linearization → We need a better way to reduce the number of operations performed between our weights and our loss function (Residual connections)

□ De-Bottlenecking → We need a better way to ensure we are not bottlenecking any representations into some channel which is too small to contain all the information we need (Attention mechanism → later)





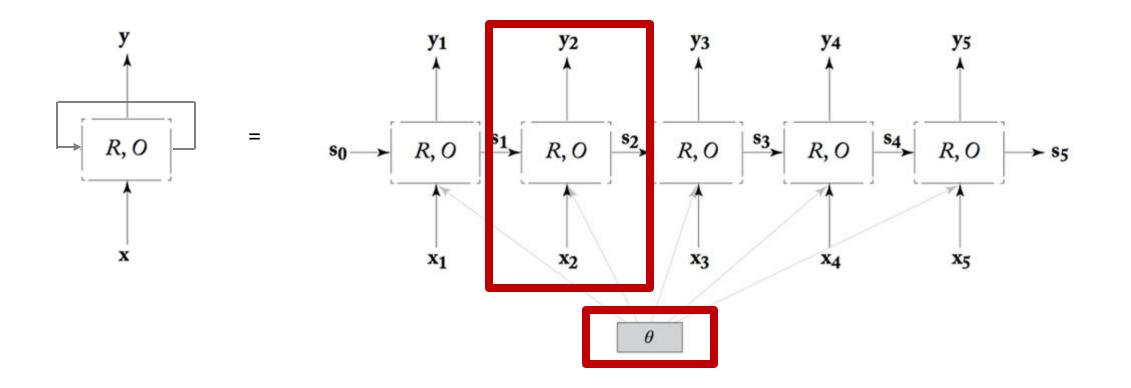
Outline

Linearization: A general heuristic for model improvement

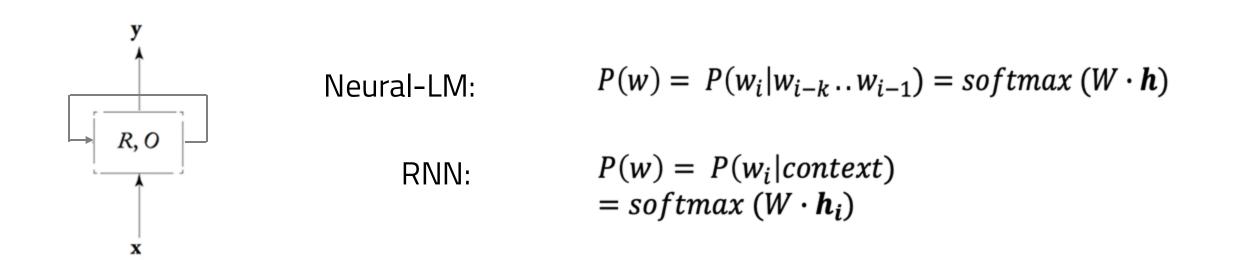
- Recurrent Neural Network (RNN)
- □ Long Short-term Memory (LSTM)
- Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; condition on the entire sequence history.



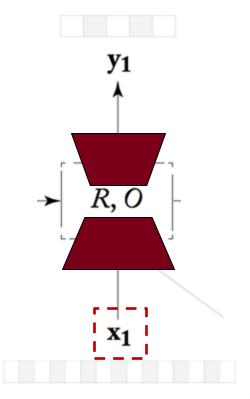
Goldberg 2017



□ Each time set has two inputs:

 $\Box X_i$ (the observation at time step *i*):

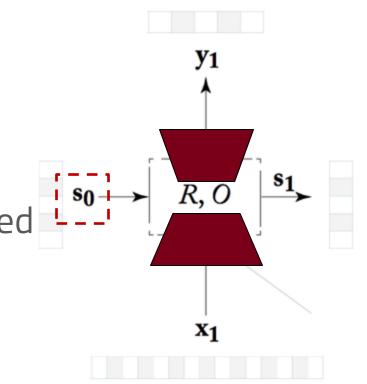
One-hot vector, feature vector, or distributed
 representation of input token at *i* step



Each time set has two inputs:

 $\Box X_i$ (the observation at time step *i*):

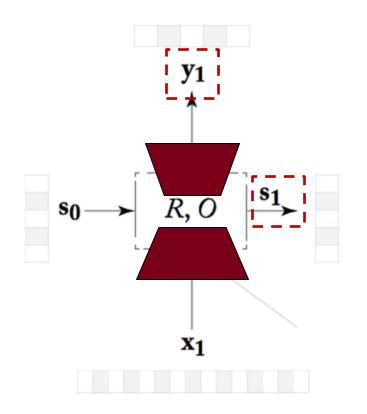
- One-hot vector, feature vector, or distributed representation of input token at *i* step
- □ S_{i-1} (the output of the previous state): • Base case: $S_0 = 0$ vector



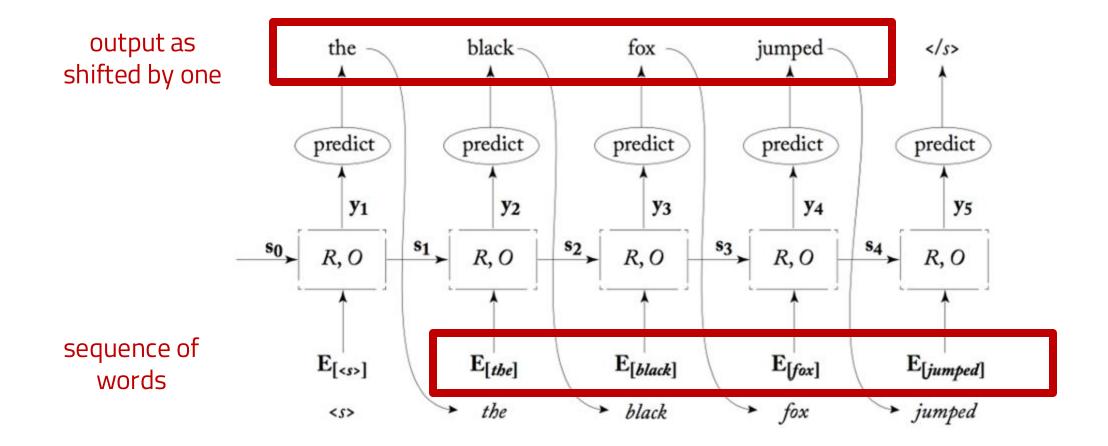
□ Each time set has two outputs:

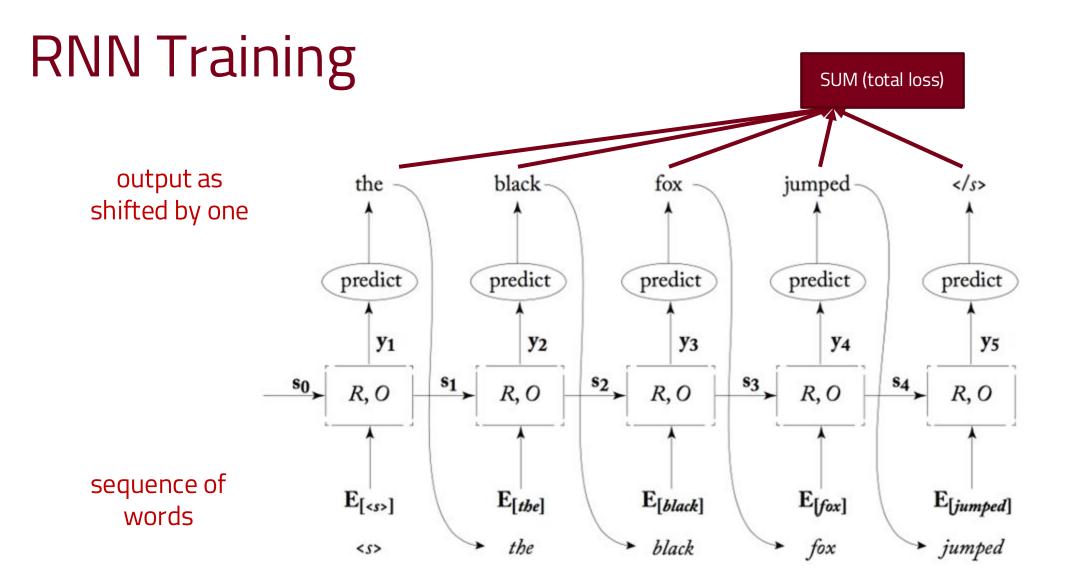
S_i = R (X_i, S_{i-1})
 R computes the output state as a function of the *current input* and *previous state*

y_i = O (S_i)
 O computes the output as a function of the *current output state*



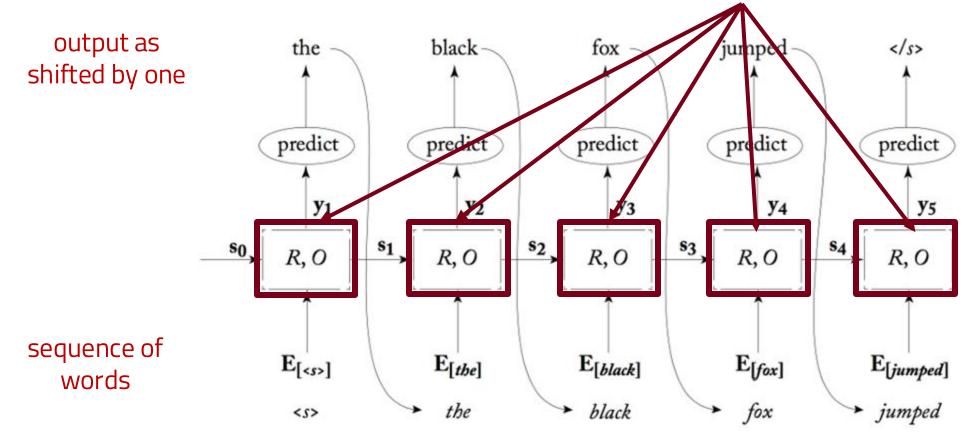
RNN Training





RNN Training

Parameters are shared! Derivatives are accumulated.



What can RNNs do?

Represent a sentence

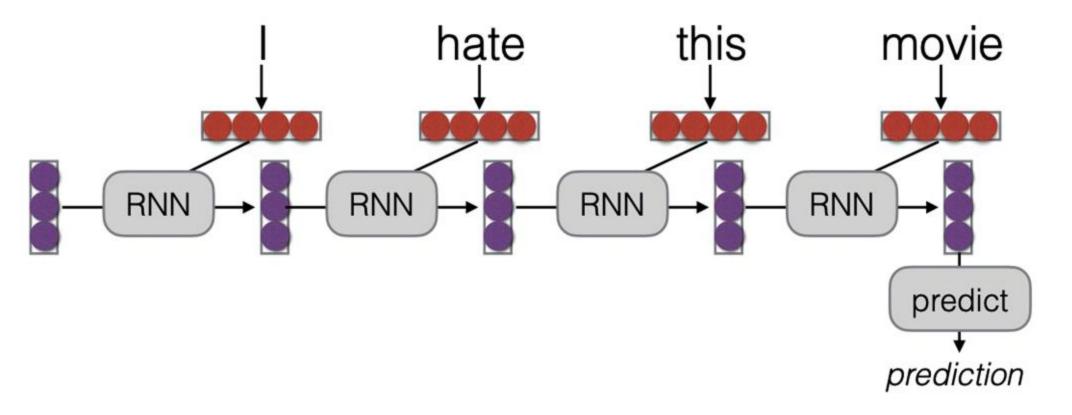
o Read whole sentence, make a prediction

Represent a context within a sentence

o Read context up until that point

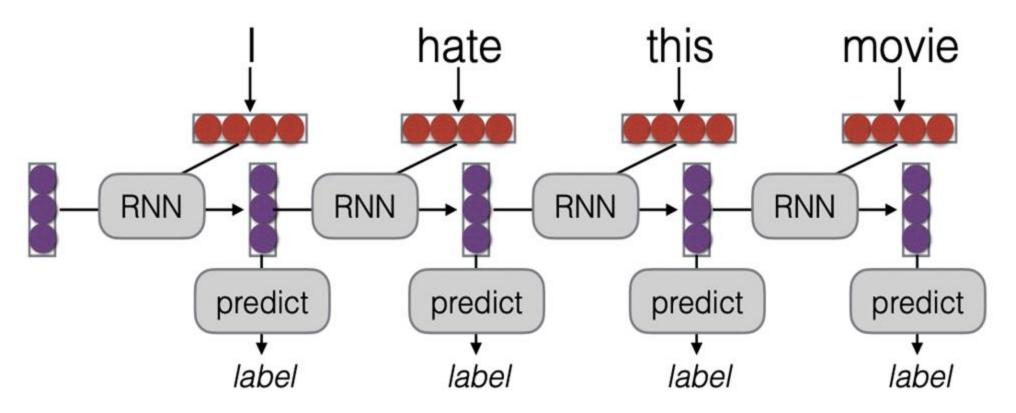
Representing Sentences

- Sentence classification
- Conditioned generation



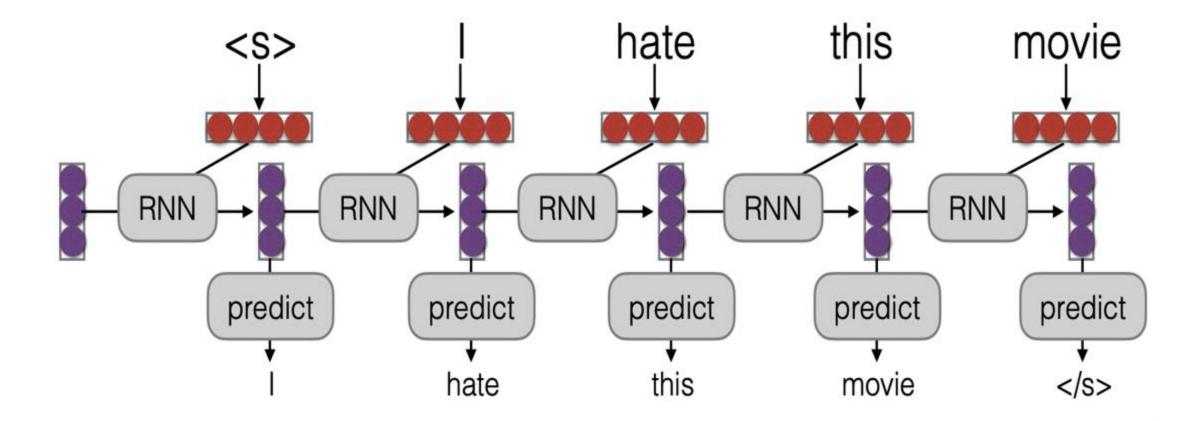
Representing Context within Sentence

- Tagging
- Language modeling

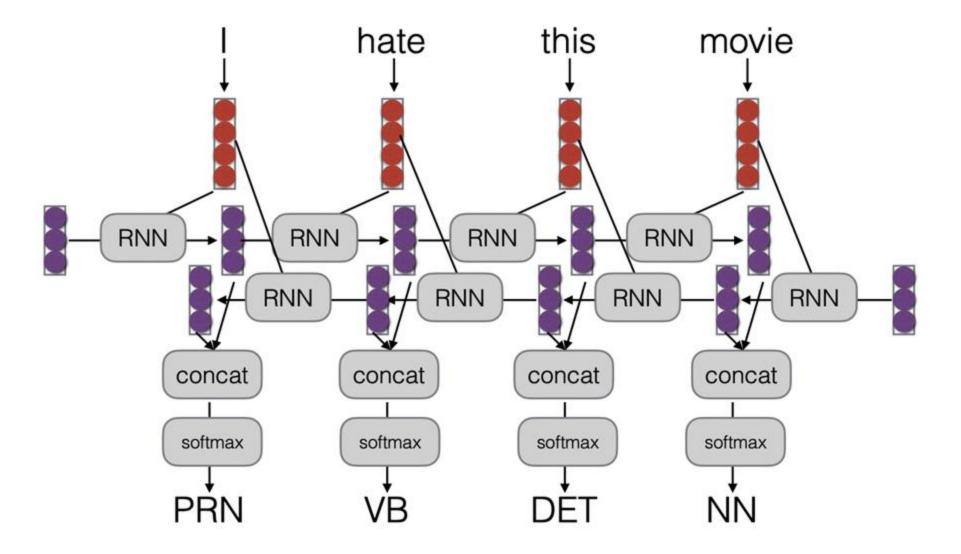


e.g., Language Modeling

Language modeling is like a tagging task, where each tag is the next word!



e.g., POS Tagging with Bi-RNNs



Outline

Linearization: A general heuristic for model improvement

- Recurrent Neural Network (RNN)
- Long Short-term Memory (LSTM)
- Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

Vanishing Gradient

Gradients decrease as they get pushed back

 $\frac{dl}{d_{h_0}} = \operatorname{tiny} \quad \frac{dl}{d_{h_1}} = \operatorname{small} \quad \frac{dl}{d_{h_2}} = \operatorname{med.} \quad \frac{dl}{d_{h_3}} = \operatorname{large}$ $\begin{array}{c} \mathbf{h}_0 \rightarrow \mathbb{RNN} \rightarrow \mathbf{h}_1 \rightarrow \mathbb{RNN} \rightarrow \mathbf{h}_2 \rightarrow \mathbb{RNN} \rightarrow \mathbf{h}_3 \rightarrow \mathbb{square_err} \rightarrow \mathcal{l} \\ \mathbf{x}_1 \qquad \mathbf{x}_2 \qquad \mathbf{x}_3 \qquad \mathbf{y}^{\star} \end{array}$

□ Why? "Squashed" by non-linearities or small weights in matrices

A Solution: Long Short-term Memory (LSTM)

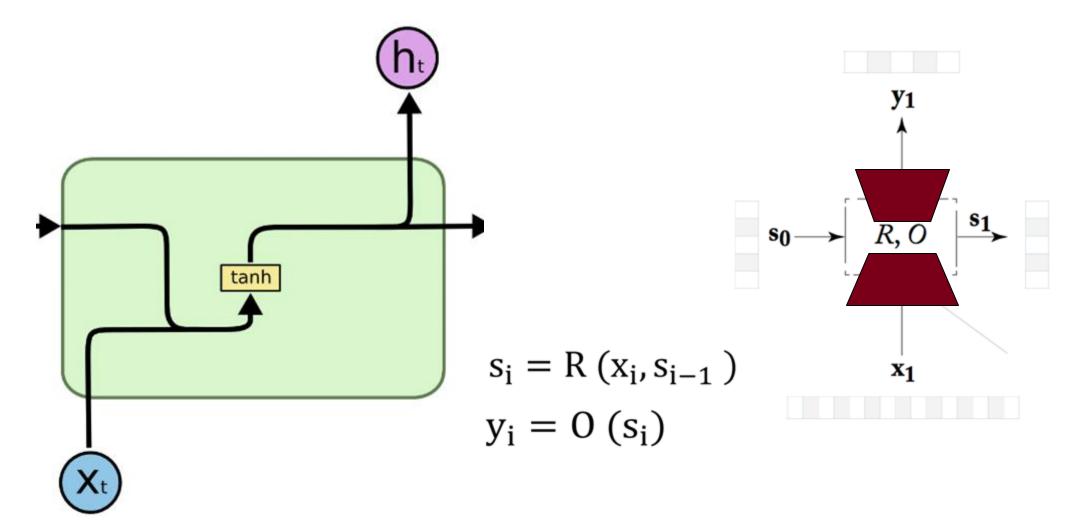
(Hochreiter and Schmidhuber 1997)

Make additive connections between time steps

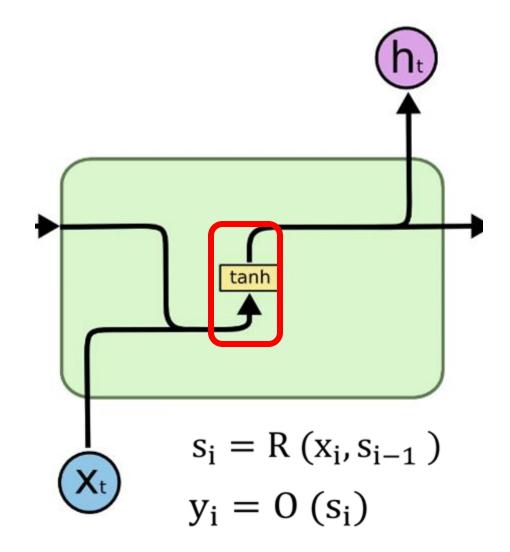
Addition does not modify the gradient, no vanishing

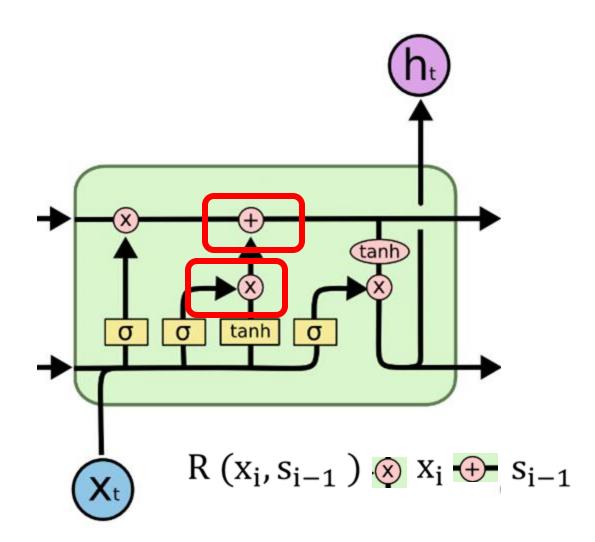
Gates to control the information flow

RNN Structure

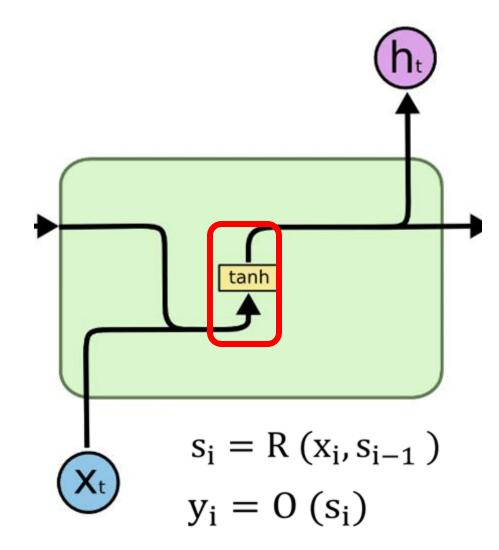


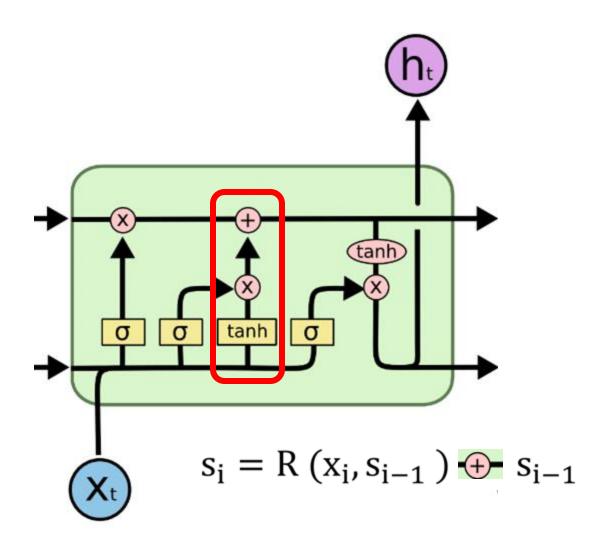
RNN vs LSTM Structure





RNN vs LSTM Structure

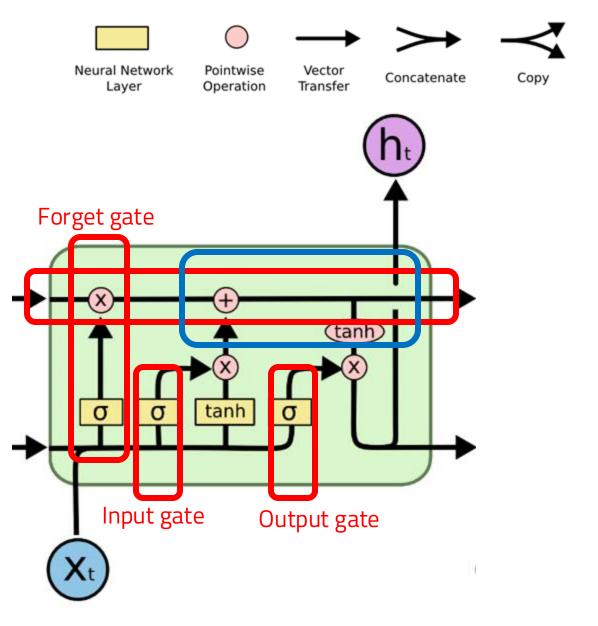




LSTM Structure

- □ Forget gate: what value do we try to add/forget to the memory cell?
- □ Input gate: how much of the update do we allow to go through? Cell state
- Output gate: how much of the cell do we reflect in the next state?

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + h_t) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

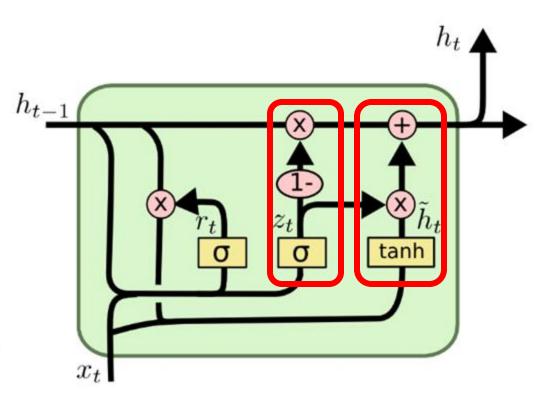


LSTM variant: Gated Recurrent Unit (GRU)

(Cho et al., 2014)

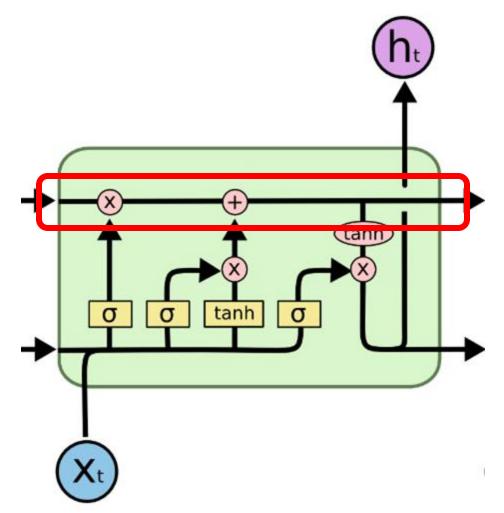
- Combines the forget and input gates into a single "update gate."
- Merges the cell state and hidden state
- And, other small changes

$$\begin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \\ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \\ h_t &= \underbrace{(1 - z_t)}_{h_{t-1}} \circ h_{t-1} + \underbrace{z_t}_{h} \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \\ & \text{Additive or Non-linear} \end{aligned}$$



Most Important Takeaway

- The Cell State is an information highway
- Gradient can flow over this without nearly as many issues of vanishing/exploding gradients that we saw in RNNs
- We are doing a better job at reducing the 'distance' between our loss function and each individual parameter



A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

Make additive connections between time steps

Addition does not modify the gradient, no vanishing

Gates to control the information flow

Outline

Linearization: A general heuristic for model improvement

- Recurrent Neural Network (RNN)
- □ Long Short-term Memory (LSTM)
- Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

class RNN(nn.Module):

...

def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None: super().__init__()

```
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)
```

```
def forward(self, x, hidden_state) :

x = self.i2h(x)

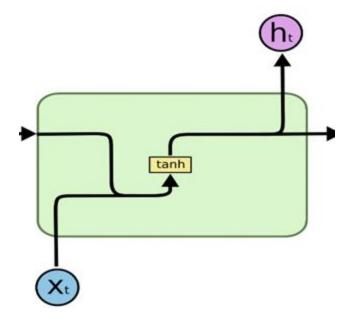
hidden_state = self.h2h(hidden_state)

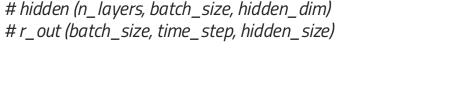
hidden_state = torch.tanh(x + hidden_state)

out = self.h2o(hidden_state)

y_i = O(s_i)

return out, hidden_state
```





x (batch_size, seq_length, input_size)

self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):
r_out, hidden = self.rnn(x, hidden)
r_out = r_out.view(-1, self.hidden_dim)
return self.fc(r_out), hidden
y_i = O(s_i)

def __init__(self, input_size, output_size, hidden_dim, n_layers):
 super(RNN, self).__init__()

class RNN(nn.Module):

...

class LSTM (nn.Module):

def __init__(self, num_classes, input_size, hidden_size, num_layers, seq_length):

```
super(LSTM1, self).__init__()
```

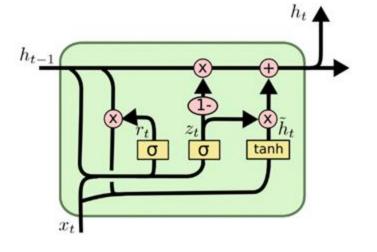
```
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()
```

def forward(self,x):

. . .

 $\begin{array}{l} h_0 = \text{Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))} \\ c_0 = \text{Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))} \\ \text{output, (hn, cn)} = \textbf{self.lstm}(x, (h_0, c_0)) \\ \text{hn} = \text{hn.view(-1, self.hidden_size)} \\ f_t = \sigma_g(W_t, v_t) \\ \text{return self.fc (self.relu(hn))} \\ \end{array}$

 $egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$



O PyTorch

Outline

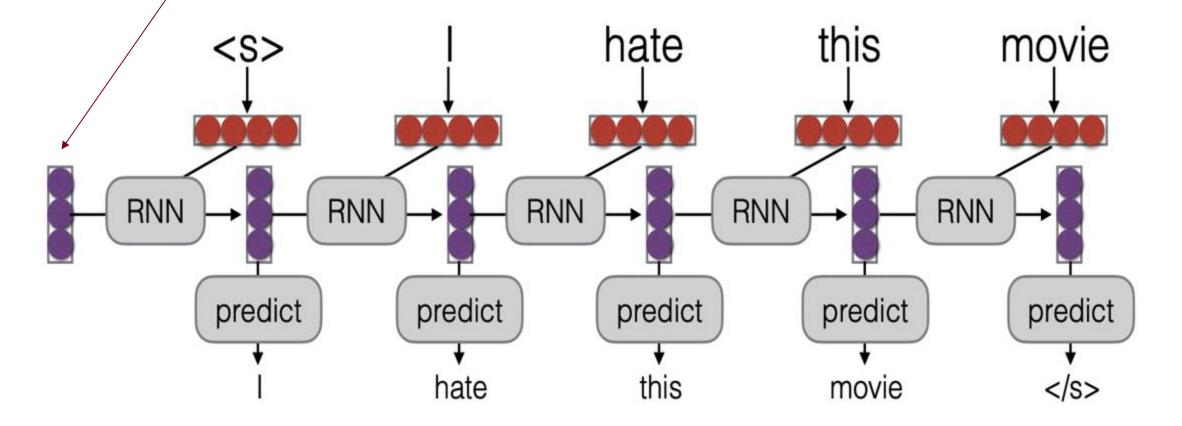
Linearization: A general heuristic for model improvement

- Recurrent Neural Network (RNN)
- Long Short-term Memory (LSTM)
- Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

Connecting RNN to RNN for sequence-to-sequence (seq2seq) modeling

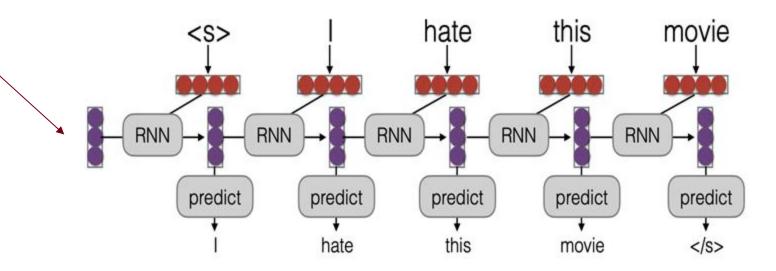
RNN (decoder) for language modeling

Randomly initialized hidden state h_t at time step t = 0

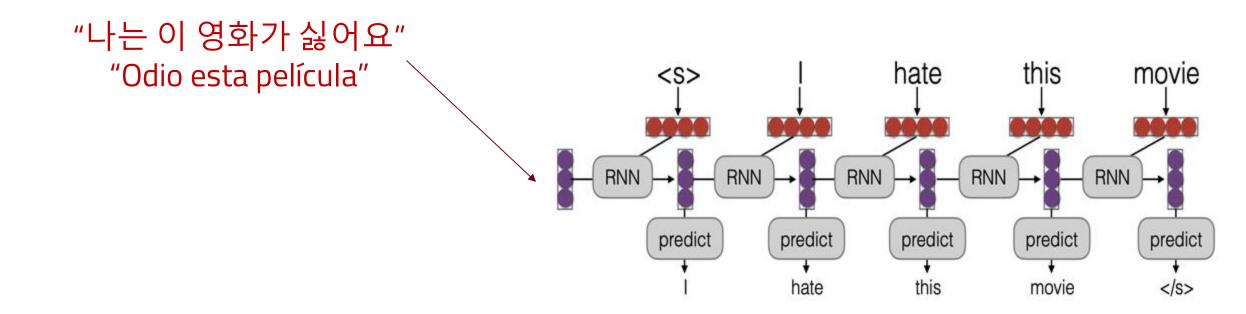


RNN (decoder) for language modeling

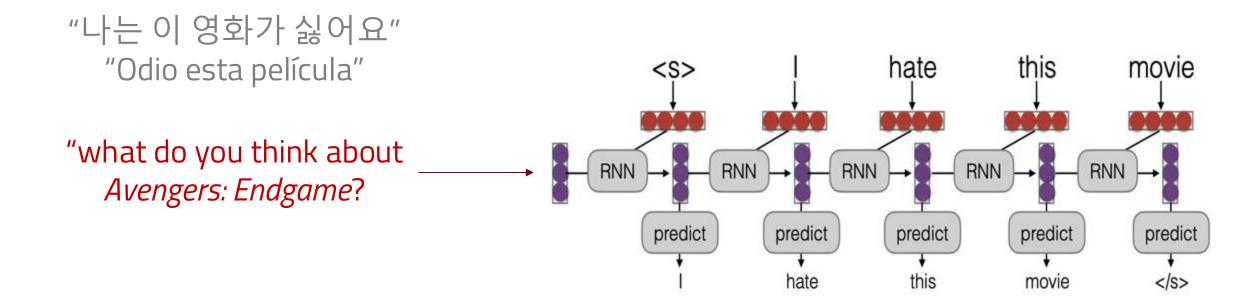
What if we encode some specific context, instead of random state?



RNN (encoder) - RNN (decoder) for machine translation



RNN (encoder) - RNN (decoder) for dialogue generation



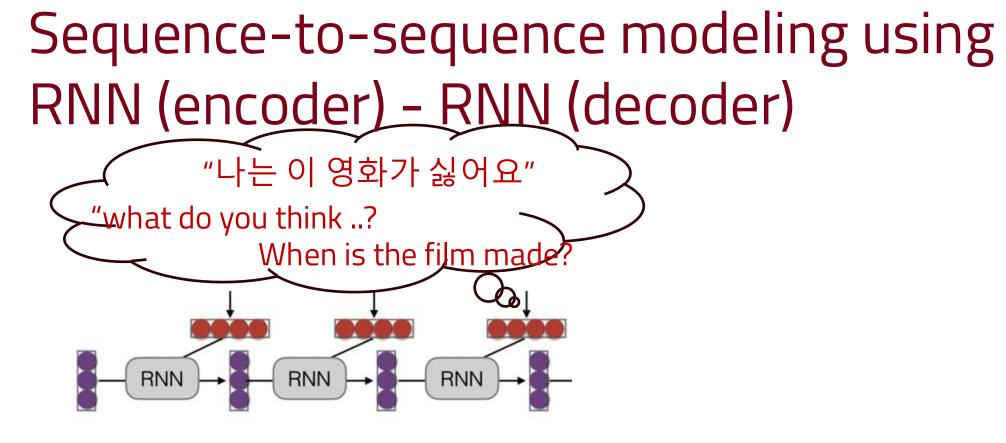
RNN (encoder) - RNN (decoder) for question answering

"나는 이 영화가 싫어요" "Odio esta película"

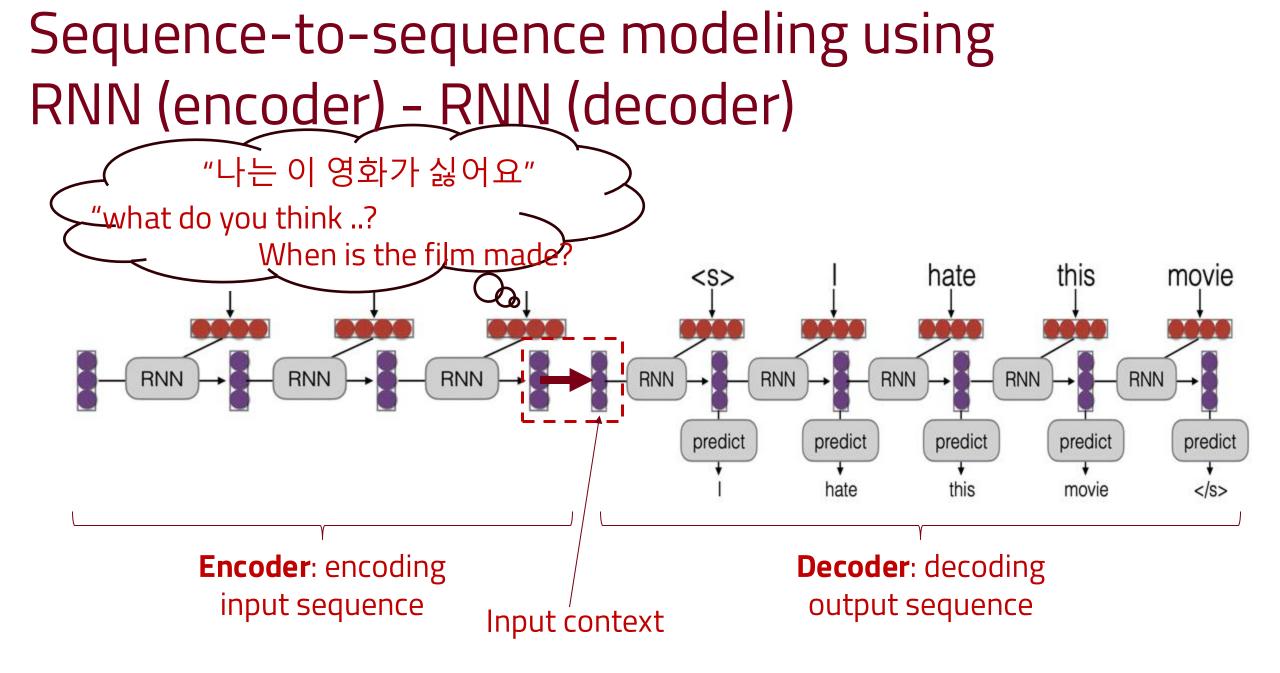
"what do you think about *Avengers: Endgame*? <S> This film is made in 1997
Image: Constrained and the second dependence of the seco

This film is made in 1997

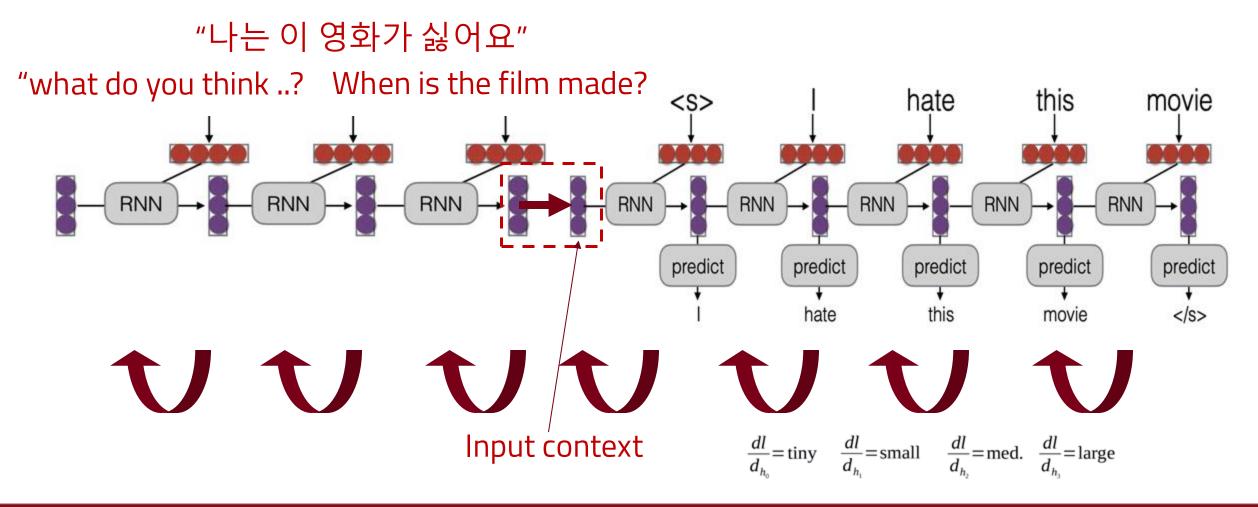
When is the film made?

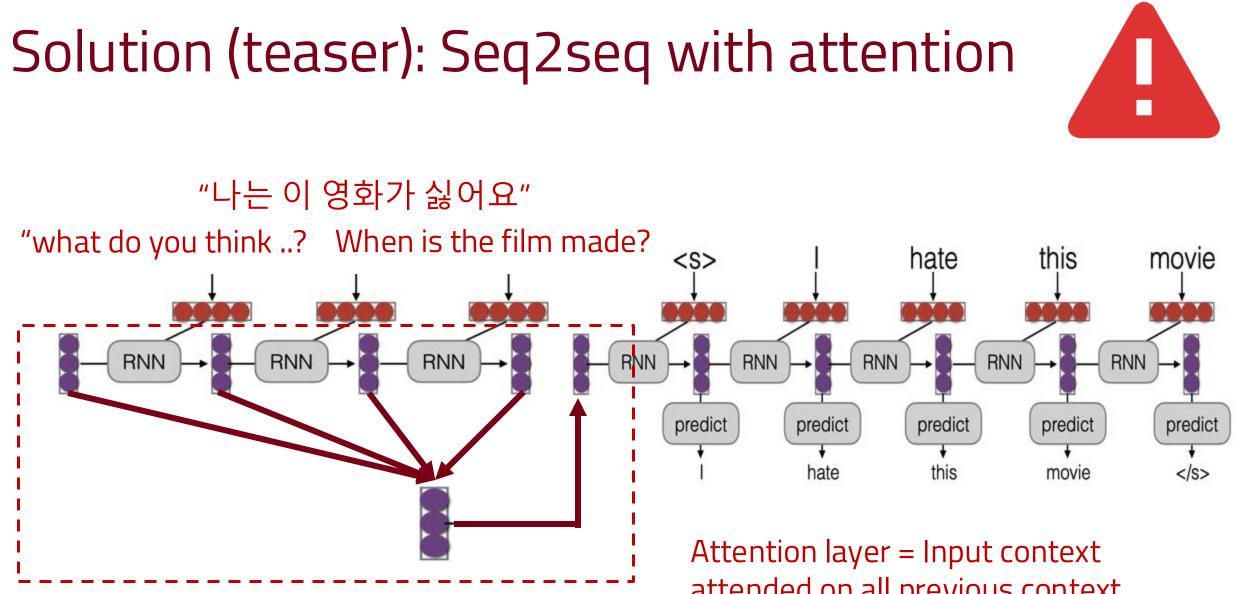


Encoder: encoding input sequence



Problem: forgetting input context as input gets longer





attended on all previous context (will be covered more in Transformer)

State-of-the-art Language Models

Teaser: Transformer-based LMs

□ SOTA LMs: GPT-2, Radford et al. 2018; GPT-3, Brown et al. 2020

Trigram	LSTM	GPT-2	GPT-3	
109	58.3	35.8	20.5	

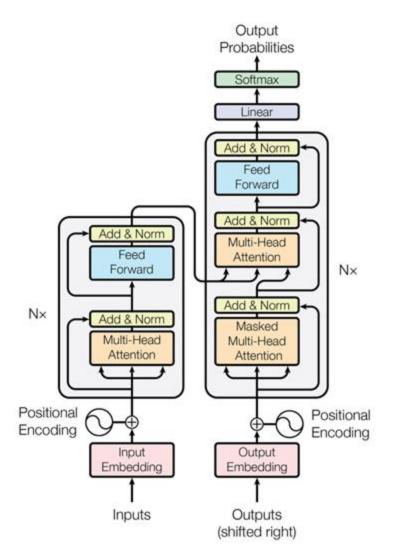
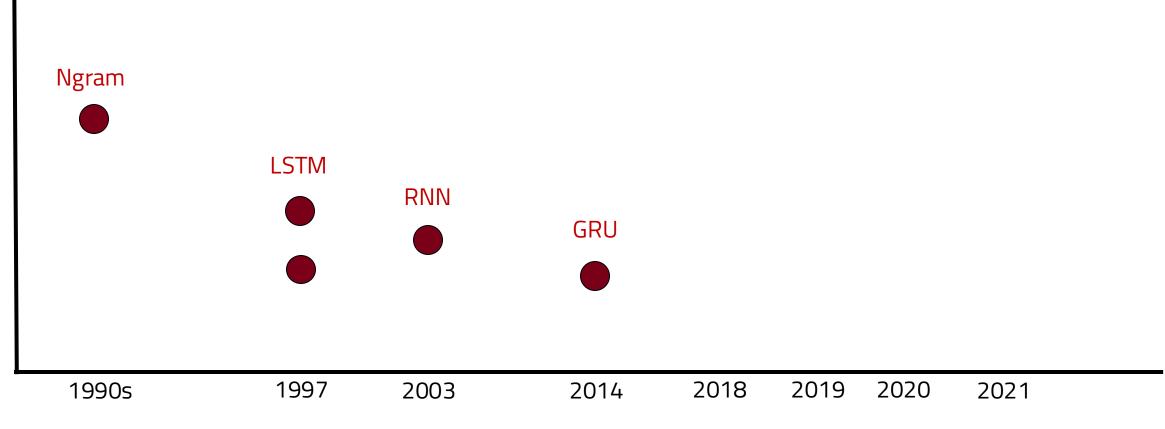
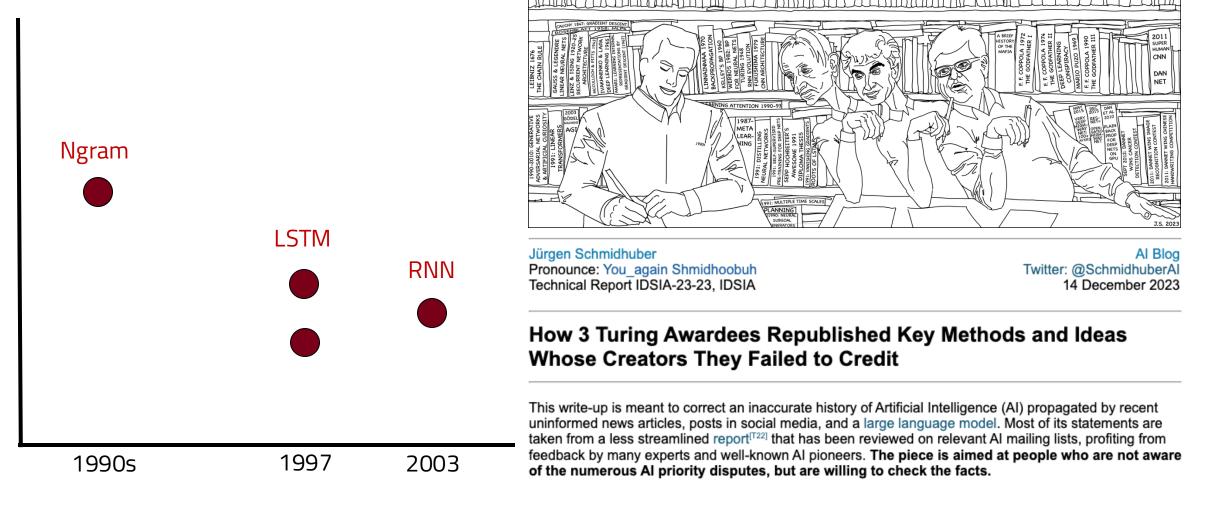
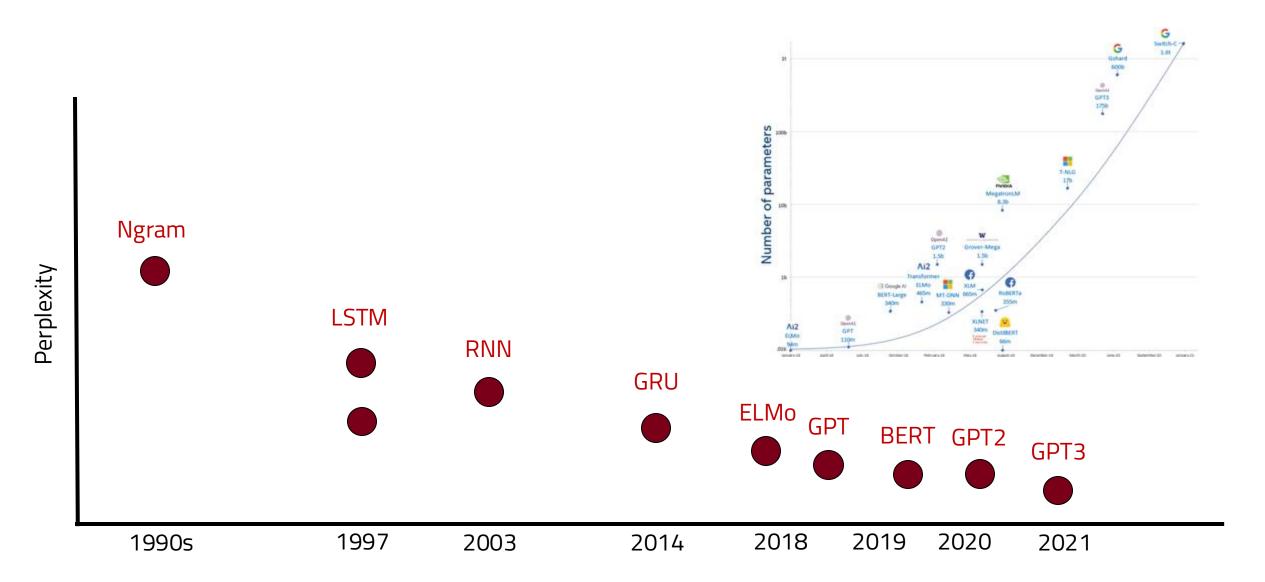


Figure 1: The Transformer - model architecture.

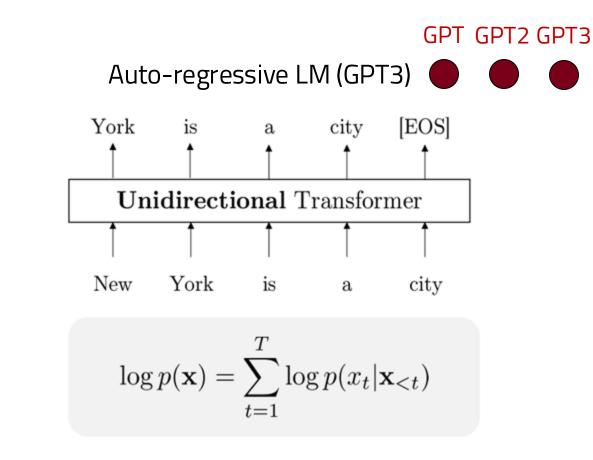






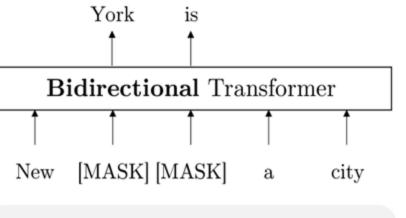
CSCI 5541 NLP

Teaser: Two Objectives for Language Model Pretraining



Next-token prediction

ELMo BERT Denoising autoencoding (BERT)



$$\log p(\bar{\mathbf{x}}|\hat{\mathbf{x}}) = \sum_{t=1}^{T} \operatorname{mask}_{t} \log p(x_{t}|\hat{\mathbf{x}})$$

Reconstruct masked tokens

Slides from Zihang Dai

Why better language models are useful?

Language models can directly encode knowledge present in the training corpus.

The director of 2001: A Space Odyssey is _____

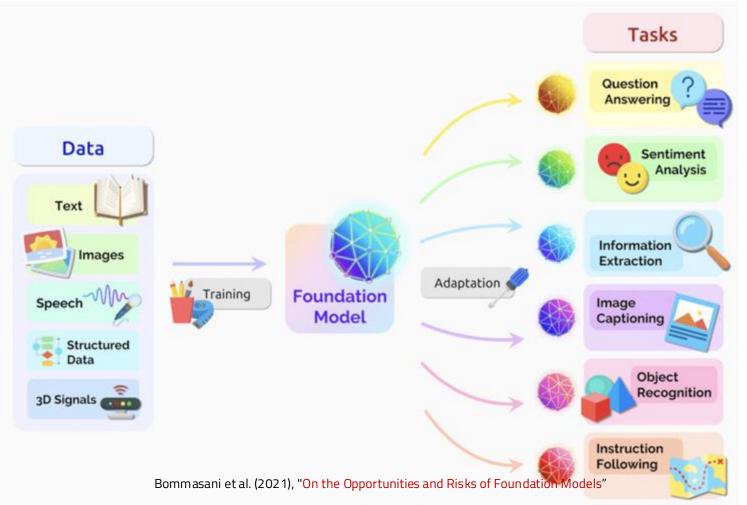
Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples

Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam died in	Paris	Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of	dog	dogs [-0.3], breeds [-2.2], dog
The official language of Mauritius is	English	English [-0.6], French [-0.9], Arabic
Patrick Oboya plays in position.	midfielder	centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after	Hamburg	Hess [-7.0], Hermann [-7.1], Schmidt

Language models can be a foundation for various tasks across different modalities



Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?"

