
CSCI 5541: Natural Language Processing
Lecture 7: Language Models: RNN, LSTM, and Seq2Seq
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Announcement (0213)
❑ Minor HW2 Revisions --> See slack announcement
❑ HW3 is released. The due date is due Tue, Feb 25.
❑ Project

o Brainstorming is due next Tuesday, Feb 18
o Groups have been assigned in slack
o There are a couple of students not yet in groups. If you have a fully formed group 

and are willing to take on someone else, let me know.
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Ngram LM

Uni-gram Bi-gram
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Sparsity in Ngram LM
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Ngram LM  vs  Neural LM
To avoid the data sparsity 

problem from the ngram LM
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Neural LM
Simple feed-forward multilayer perceptron 

(e.g., one hidden layer)

Bengio et al. 2003, A Neural Probabilistic Language Model
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Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
( |x| = V )

Output space: |y| = V

kV

Distributed representation 
(H)
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Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
( |x| = V )

Distributed representation
( |y| = H)

V >> H

Represent high-dimensional words (and 
contexts) as low-dimensional vectors
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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Neural LM against Ngram LM
Pros 
❑ No sparsity problem
❑ Don’t need to store all observed n-gram counts

Cons
❑ Fixed context window is too small (larger window, larger W)

o Windows can never be large enough
❑ Different words are multiplied by completely different weights (W); no 

symmetry in how the inputs are processed.
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Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs 
❑ Why language models are useful?
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How do we make a better model?

?
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More Params are Better

Better models have more weights
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Increasing depth is more efficient than width

x h1 h2 yx y

h1

Model 2: 

Model 1: 
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…but very deep models are harder to train 
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Why is this so challenging?
Forward Pass

Backward Pass

L(y, ො𝑦)

To update this 

weight…

we have to 

propagate 

through all of 

this
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Analogy #1: A Game of Telephone
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Analogy #2: A funnel of information

Inputs 

Layer 1 

weights

Layer 1 

outputs

Layer 2 

weights

Layer 2 

outputs

Layer 3 

weights

Outputs
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Linearization and Det-Bottlenecking 
❑ Linearization →We need a better 

way to reduce the number of 
operations performed between our 
weights and our loss function 
(Residual connections)

❑ De-Bottlenecking →We need a 
better way to ensure we are not 
bottlenecking any representations 
into some channel which is too small 
to contain all the information we 
need (Attention mechanism → later)



CSCI 5541 NLP

Outline
❑ Linearization: A general heuristic for model improvement
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs 
❑ Why language models are useful?



CSCI 5541 NLP 24

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; 
condition on the entire sequence history.

Goldberg 2017

=
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Recurrent Neural Network

Goldberg 2017

Neural-LM: 

RNN:
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Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋𝑖 (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed 

representation of input token at 𝑖 step
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Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋𝑖 (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed 

representation of input token at 𝑖 step

❑ 𝑆𝑖−1 (the output of the previous state):
o Base case: 𝑆0 = 0 vector
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Recurrent Neural Network

❑ Each time set has two outputs:

❑ 𝑆𝑖 = 𝑅 (𝑋𝑖 , 𝑆𝑖−1)
o R computes the output state as a function 

of the current input and previous state

❑ 𝑦𝑖 = 𝑂 (𝑆𝑖)
o O computes the output as a function of 

the current output state



CSCI 5541 NLP 29

RNN Training

sequence of 
words

output as 
shifted by one
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RNN Training SUM (total loss)

sequence of 
words

output as 
shifted by one
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RNN Training Parameters are shared! 
Derivatives are accumulated.

sequence of 
words

output as 
shifted by one
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What can RNNs do?
❑ Represent a sentence

o Read whole sentence, make a prediction

❑ Represent a context within a sentence
o Read context up until that point
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Representing Sentences
❑ Sentence classification
❑ Conditioned generation
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Representing Context within Sentence
❑ Tagging
❑ Language modeling
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e.g., Language Modeling
❑ Language modeling is like a tagging task, where each tag is the next word!
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e.g., POS Tagging with Bi-RNNs
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Vanishing Gradient
❑ Gradients decrease as they get pushed back

❑ Why? “Squashed” by non-linearities or small weights in matrices
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A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps 

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)
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RNN Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Structure
❑ Forget gate: what value do we try to 

add/forget to the memory cell?
❑ Input gate: how much of the update 

do we allow to go through?
❑ Output gate: how much of the cell do 

we reflect in the next state?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Forget gate

Input gate Output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM variant: Gated Recurrent Unit (GRU)
❑ Combines the forget and input gates into a 

single “update gate.”
❑ Merges the cell state and hidden state
❑ And, other small changes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(Cho et al., 2014)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Most Important Takeaway
❑ The Cell State is an information 

highway
❑ Gradient can flow over this 

without nearly as many issues of 
vanishing/exploding gradients that 
we saw in RNNs

❑ We are doing a better job at 
reducing the ‘distance’ between 
our loss function and each 
individual parameter
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A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps 

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)
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class RNN(nn.Module):
def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:

super().__init__()
…
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)

def forward(self, x, hidden_state) :
x = self.i2h(x)
hidden_state = self.h2h(hidden_state)
hidden_state = torch.tanh(x + hidden_state)
out = self.h2o(hidden_state)
return out, hidden_state
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class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):

super(RNN, self).__init__()
…
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):
r_out, hidden = self.rnn(x, hidden)
r_out = r_out.view(-1, self.hidden_dim)

return self.fc(r_out) , hidden
# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
# r_out (batch_size, time_step, hidden_size)
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class LSTM (nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers, 

seq_length):
super(LSTM1, self).__init__()
…
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, 

num_layers=num_layers, batch_first=True)
self.fc =  nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()

def forward(self,x):
h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
output, (hn, cn) = self.lstm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden_size)
return self.fc (self.relu(hn))
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Connecting RNN to RNN 
for sequence-to-sequence (seq2seq) 

modeling
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RNN (decoder) for language modeling
Randomly initialized hidden 
state ℎ𝑡 at time step 𝑡 = 0
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RNN (decoder) for language modeling
What if we encode some 
specific context, instead 
of random state?
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RNN (encoder) - RNN (decoder) 
for machine translation

“나는이영화가싫어요”
“Odio esta película”
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RNN (encoder) - RNN (decoder) 
for dialogue generation

“나는이영화가싫어요”
“Odio esta película”

“what do you think about 
Avengers: Endgame? 
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RNN (encoder) - RNN (decoder) 
for question answering

“나는이영화가싫어요”
“Odio esta película”

“what do you think about 
Avengers: Endgame? 

When is the film made? This film is made in 1997

This film is made in 1997<s>
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Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think ..? 

Encoder: encoding 
input sequence

When is the film made?
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Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think ..? 

Encoder: encoding 
input sequence

Decoder: decoding 
output sequenceInput context

When is the film made?
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Problem: forgetting input context as 
input gets longer

Input context

“나는이영화가싫어요”
“what do you think ..? When is the film made?
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Solution (teaser): Seq2seq with attention

Attention layer = Input context 
attended on all previous context
(will be covered more in Transformer)

“나는이영화가싫어요”
“what do you think ..? When is the film made?
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State-of-the-art Language Models
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Teaser: Transformer-based LMs
❑ SOTA LMs: GPT-2, Radford et al. 2018;  GPT-3, 

Brown et al. 2020

Trigram LSTM
109 58.3

GPT-2 GPT-3
35.8 20.5
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Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

Pe
rp
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ity
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Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

ELMo GPT BERT GPT2 GPT3

Pe
rp

lex
ity
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Teaser: Two Objectives for Language Model Pretraining

Slides from Zihang Dai

Next-token prediction Reconstruct masked tokens

Auto-regressive LM (GPT3) Denoising autoencoding (BERT)
ELMo BERTGPT GPT2 GPT3
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Why better language models are useful?
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The director of  2001: A Space Odyssey is _____________

Language models can directly encode knowledge
present in the training corpus.
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Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)
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Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)
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Language models can be a foundation for various 
tasks across different modalities

Bommasani et al. (2021), "On the Opportunities and Risks of Foundation Models”
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Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”
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