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Recitation and In-class Tutorials (next week)
Announcement to Come Tomorrow via Slack
❑ Computing basics

o Setting up environment for PyTorch and Transformers 
o Pytorch Basics Tutorial 

❑ Tutorial on SciKit-learn/PyTorch
❑ Tutorial on HuggingFace/vLLM
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Announcement
❑ If you miss the first class, please check out the course details in the 

lecture slides 
❑ Share your interests and project ideas in #random channel and actively 

look for your teammates. Team formation is due on Feb 6.
❑ If you are enrolled but not invited to Slack, please send James an email.
❑ HW1 out tomorrow (Due: Feb 4)
❑ OH out tomorrow on course website
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Outline
❑ What is NLP?
❑ Does ChatGPT solve every NLP problem? 
❑ Language consists of many levels of structure
❑ What makes language so difficult to process?
❑ How to process language?
❑ Recent Developments (2019-2024)
❑ Limits of LLMs and the Financial Incentives of GenAI
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NLP is interdisciplinary
❑ Linguistics
❑ Artificial Intelligence
❑ Machine Learning (2000-present)
Recently, 
❑ Social Science and Humanities
❑ Human-computer Interaction
❑ Education
❑ Robotics
❑ Cognitive Science / Brain Science / Neuroscience
❑ Psychology
❑ Law / Medical / Biology
❑ ..
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NLP vs (Computational) Linguistics
❑ Linguistics involve the nature of linguistic representations and linguistic 

knowledge, and how linguistic knowledge is acquired and deployed in 
comprehension of language.

❑ Computational linguistics asks what humans are computing and how, by 
mathematically defining classes of linguistic representations and formal 
grammars to capture the range of phenomena in human languages. 

❑NLP is the art of solving engineering problems that need to analyze (or 
generate) natural language text. The metric is whether you got good 
solutions on the engineering problem. After all, their goal is not a full theory 
but rather the simplest, most efficient approach that will get the job done.
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https://twitter.com/radamihalcea/status/1422892875218628616

https://twitter.com/radamihalcea/status/1422892875218628616
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Linguistic Theories
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Language as Formal Logic
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Language as Social Activity
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How biased are our mental models to Language?

Behaviorist – Little Bias within models Language is Embedded in our minds – High 

bias
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NLP = Processing language 
with computers
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Processing as sorting and clouding

Word cloud generated with text on our class homepage using www.wordclouds.com

http://www.wordclouds.com/
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Processing as understanding sentiment

Lei Zhang and Bing Liu, Sentiment Analysis and Opinion Mining
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Processing as assistant
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Processing as question answering
❑What year was Abraham 

Lincoln born?
❑How many states were in the 

United States that year?
❑How much Chinese silk was 

exported to England in the 
end of the 18th century?

It’s alive: IBM’s Watson supercomputer defeats humans in final Jeopardy match, 2011

https://venturebeat.com/business/ibms-watson-wins-final-jeopardy-match/
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Processing as translation
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Processing as (email) assistant
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Processing as communication
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Social cognition / Reasoning
“Two children, Chloe and Alexander, went 
for a walk. They both saw a dog and a tree. 
Alexander also saw a cat and pointed it out 
to Chloe. She went to pet the cat.” 
“Did Chloe see the cat?”

Cause and effect
“You need flour to bake bread. You have 
a sack of flour in the garage. When you 
get there, you find that it got thoroughly 
soaked in a heavy rain last night. 
So you have to ___”

Tracking long narratives
“Never in his life has Bashan caught a hare, nor will he ever; the thing is as good as impossible. Many dogs, 
they say, are the death of a hare, a single dog cannot achieve it, even one much speedier and more 
enduring than Bashan. The hare can ``double'' and Bashan cannot --- and that is all there is to it. How 
Bashan runs! It is beautiful to see a creature expending the utmost of its powers. He runs better than the 
hare does, he has stronger muscles, the distance between them visibly diminishes before I lose sight of 
them. And I make haste too, leaving the path and cutting across the park towards the river-bank, reaching 
the gravelled street in time to see the chase come raging on— the hopeful, thrilling chase, with Bashan on 
the hare’s very heels; — “One more push, Bashan!” I think, and feel like shouting; 
“…..

Failure cases by GPT3, Gary Marcus & Ernst Davis
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Do LLM’s solve every NLP 
problem?
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LLMs Keep Conquering New Benchmarks
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https://agi.safe.ai/
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What makes language so 
difficult to process? 
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Language consists of many levels of structure

Humans fluently integrate all 
of these in generating and 
understanding language
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This is a simple sentence
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Phonology

Example by Nathan Schneider

❑ Pronunciation modeling
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Words

Example by Nathan Schneider

❑ Tokenization
❑ Language modeling
❑ Spelling correction
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Morphology

Example by Nathan Schneider

Read more about stemming and lemmatization 
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

❑ Morphological analysis
❑ Tokenization
❑ Stemming / Lemmatization

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
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Parts of Speech (POS)

Example by Nathan Schneider

❑ Part-of-speech tagging
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Parts of Speech (POS)

Example by Nathan Schneider

❑ Part-of-speech tagging
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Syntax

Example by Nathan Schneider

❑ Syntax parsing
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Syntax

Example by Nathan Schneider

❑ Syntax parsing
o Constituency Parsing: break a sentence into 

sub-phrases
o Dependency Parsing: explore the dependencies 

between the words in a sentence
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Semantics

Example by Nathan Schneider

❑ Named entity recognition
❑ Word sense disambiguation
❑ Semantic role labeling
❑ Frame semantics
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Discourse (Pragmatics)

Example by Nathan Schneider

CONTRAST

❑ Co-reference resolution



CSCI 5541 NLP 41

Language consists of many levels of structure

Humans fluently integrate all of these in 
generating and understanding language
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What makes language difficult?

❑ Language is ambiguous
❑ Language needs to be scaled
❑ Language is sparse
❑ Language is varying
❑ Language is implicit
❑ Language is hard to represent
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Ambiguity at multiple levels

“One morning I shot an 
elephant in my pajamas”

Groucho Marx
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Ambiguity at multiple levels

“One morning I shot an 
elephant in my pajamas”
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“I saw her duck with a telescope”

Slide from Dhruv Batra and figure from Liang Huang

• I used a telescope to observe a small web-footed broad-billed swimming bird belonging to a female person.
• I observed a small web-footed broad-billed swimming bird belonging to a female person. The bird had a 

telescope.
• I observed a female person move quickly downwards. The person had a telescope.
• I used a telescope to observe a female person move quickly downwards.
• I used a telescope to cut a small web-footed broad-billed swimming bird belonging to a female person.
• I used a telescope to observe heavy cotton fabric of plain weave belonging to a female person.
• I used a telescope to cut heavy cotton fabric of plain weave belonging to a female person.
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Scale: Applications x Languages
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Sparsity
❑ Sparse data due to Zipf’s Law
❑ Most frequent words in the 

English Europarl corpus (out of 
24M word tokens)

❑ 36,231 occur only once
o E.g., pseudo-rapporteur, lobby-

ridden, perfunctorily, Lycketoft, 
UNCITRAL, policyfor, 145.95 ..



CSCI 5541 NLP 48

Word Frequency Distribution
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Zipf’s Law
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Variation over Domains

❑ What happens if you try to use the same tagger/parser for social 
media text?

❑ Suppose you trained a part-of-speech tagger or parser on the 
Wall Street Journal
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Application x Languages x Domains
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Variation over Time
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Variation over Time

24 New Words Invented by Teenagers , NYT 20220331

https://www.instagram.com/reel/C-NuNbutMD6/

https://www.nytimes.com/2022/03/31/learning/24-new-words-invented-by-teenagers.html
https://www.instagram.com/reel/C-NuNbutMD6/


CSCI 5541 NLP 54

Variation over Location

A Latent Variable Model for Geographic Lexical Variation [ Eisenstein et al., 2010]
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Beyond conventional meaning
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Implicit meaning behind language and Pragmatics

❑ Speech act  [Austin 1962]

o “Could you please pass the salt to me?” 

❑ Implicature [Grice 1975]

o Alice: "Are you going to Paul’s party?"   
o Bob: "I have to work.“

❑ labelling
❑ repeating
❑ answering
❑ requesting (action)
❑ requesting (answer)
❑ calling
❑ greeting
❑ protesting
❑ practicing
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Unknown Representation
❑ We don’t even know how to represent knowledge a human has/needs
❑ What is the meaning of word or sentence?
❑ How to model context or general knowledge?

“Drink this milk” “Sunset is beautiful” Elephants are bigger than mice?
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Summary
❑ NLP is interdisciplinary
❑ Language consists of many levels of structure:

o Phonology, syntax, semantics, discourse, pragmatics
❑ Processing language is difficult, due to 

o ambiguity, scales, sparsity, variation, implication, and representation
❑ Development of NLP models and representations grows rapidly

o From rules to feature learning to RNNs to Transformers
❑ “Large” language models

o Generalist AI or AGI via prompting and chat
o Scaling law
o Multimodal
o Limitations? Future directions?
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How to process language?
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Methods

❑ Logic-based and rule-based NLP systems (~80s)
❑ Dynamic programming and Viterbi/CKY (~90s)
❑ Naïve Bayes, LogReg, HMM/CRF, SVM, N-gram LMs (~00s)
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Methods

❑ Statistical NLP (~2005s)
❑ Latent variable models (Early ~2010s)

o Specifying probabilistic structure between variables and inferring likely 
latent values
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Representations

❑ Human-engineered features and SVMs (2005s ~ 2010s)
❑ Learned features/representations (2013s ~ 2018)
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Representations (Developing Attention)
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What happened in NLP over the 
last five years (2019-2024)?
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Scaling up!
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The Leading Players
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https://docs.cohere.ai/prompt-engineering-wiki/

https://docs.cohere.ai/prompt-engineering-wiki/
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https://docs.cohere.ai/prompt-engineering-wiki/

https://docs.cohere.ai/prompt-engineering-wiki/
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https://docs.cohere.ai/prompt-engineering-wiki/

https://docs.cohere.ai/prompt-engineering-wiki/
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https://docs.cohere.ai/prompt-engineering-wiki/

https://docs.cohere.ai/prompt-engineering-wiki/
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https://docs.cohere.ai/prompt-engineering-wiki/

https://docs.cohere.ai/prompt-engineering-wiki/
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Sentence classification via Prompting

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af
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Text Summarization via Prompting

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af
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Relation Extraction via Prompting

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af
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Email Generation via Prompting

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af
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Code Generation via Prompting

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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Mathematical Reasoning via Prompting

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af


CSCI 5541 NLP

Standard prompting versus chain-of-thought prompting for an example grade-school math problem. Chain-of-thought prompting decomposes the prompt for a multi-step 
reasoning problem into intermediate steps (highlighted in yellow), similar to how a person would approach it.

84

Chain-of-Thought Prompting

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Few-shot CoT

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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Chain-of-Thought Prompting

Large Language Models are Zero-Shot Reasoners, https://arxiv.org/abs/2205.11916

Zero-shot CoT

https://arxiv.org/abs/2205.11916
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Scaling law in language model
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https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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Emergent behavior from Scaling Law

Jeff Dean https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html

https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html
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Generalist 
NLP Agent
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Generalist AI Agent

https://chat.openai.com/chat

https://chat.openai.com/chat
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Generalist AI Agent

https://chat.openai.com/chat

https://chat.openai.com/chat
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Web Based Agent
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Reasoning (Test-time compute/scaling)
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Generalist AI across different modalities

Jeff Dean https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html

https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html
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Scaling Law in Vision-Language Model

Figure 4. The generated image for the text “A portrait photo of a kangaroo wearing an orange hoodie and blue 
sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome 
Friends!”. Note the model gets the text in the image “welcome friends” correct at 20B.

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af

https://towardsdatascience.com/a-quiet-shift-in-the-nlp-ecosystem-84672b8ec7af
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Beyond Language
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Limits of LLMs and the Financial 
Incentives of GenAI
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Limits of scaling
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Falling Short
• Benchmarks saturate rapidly, but this 

does not lead to immediate capabilities 

on tasks we would like to automate 

outside the scope of those benchmarks

• How much are current benchmarks 
serving as a proxy for getting an 

enormous number of intelligent people to 

stuff as much insight into the models as 

possible (either with good training 

environments in RL settings, or large 
datasets of reasoning over certain 

problem areas)?

• How can we design better benchmarks 

which indicate that supposedly ‘PhD 

level’ models are capable of quickly doing 
the kinds of basic work that we actually 

care about
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AI “arms race” by Big Tech

https://www.bloomberg.com/professional/insights/technology/big-tech-2025-

capex-may-hit-200-billion-as-gen-ai-demand-booms/
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Growth Economics and High CapEx

Supply Side Advantages
Demand-side Advantages
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The Game Theory of the AI Arms Race

https://www.sequoiacap.com/article/ai-optimism-vs-ai-arms-race/
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What if They are Wrong?
(it will sting, but they will probably be fine…unless margin increases)

• Computer hardware 

depreciates very rapidly 

(typically ~50% every 2-3 

years)

• This means revenues 

must be recovered from 

high spend very fast in 

order to compensate for 

this loss
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Summary
❑ NLP is interdisciplinary
❑ Language consists of many levels of structure:

o Phonology, syntax, semantics, discourse, pragmatics
❑ Processing language is difficult, due to 

o ambiguity, scales, sparsity, variation, implication, and representation
❑ Development of NLP models and representations grows rapidly

o From rules to feature learning to RNNs to Transformers
❑ “Large” language models

o Generalist AI or AGI via prompting and chat
o Scaling law
o Multimodal
o Limitations? Future directions?
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