Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 1 of 8

The lead TAs for this assignment are Bin Hu and Junhan Wu (hu000562@umn.edu and wu001412@
umn.edu). Please communicate with the lead TAs via Slack or during office hours. All questions
MUST be discussed in the homework channel (i.e., #HW2). Questions through emails, Direct
Messages, and other channels will not be answered.

Prerequisite. This assignment assumes that you have programming experience with PyTorch, Jupyter
Notebooks and Google Colab!. Going forward, we will be using Colab Pro. You can find information
at these instructions regarding subscriptions and how to get reimbursement at the end of the semester.
You have learned how to build a text classifier in the lectures. You may also learn the basic concept
of pretraining and finetuning from the tutorials presented earlier by the TAs.

Overview. As part of this assignment, you will build your own text classifier using the HuggingFace
library. By fine-tuning the pre-trained model implemented in HugginglFace model libraries on your
dataset, you will replicate the high-performing text classifier and check how far you can reach out to
the best performances by the state-of-the-art models on the Papers-with-Code leaderboard.

Academic Honesty Policy. Make sure to (a) cite any tools or papers you reference/use, and
(b) credit anyone youve discussed the assignment with. It is considered academic dishonesty if you
reference any tool/paper/person without proper attribution.

Step 1: Getting used to HuggingFace library

“| Hugging Face “ Hugging Face
* Transformers v * Transformers v
70,589 Join the Hugg ’ Join the Hugging |
a0l
GET STARTED MAIN CLASSES
Collaborate on mode
& Transformers Callbacks ’
— J Collaborate ar datasets and Spaces
Data Collator
Installation SignUp togetstartec
\ SignUp toget Keras callbacks
TUTORIALS Logging
Load pretrained instances TextGeneration Models
with an AutoClass Quick tour ONNX \
preprocess Optimization The base classes PreTrainedM¢
i loading/saving a model either
Fine-tune a pretrained Get up and running with Model outputs B loaded HuggingF
model started and show you he Pipelines (downloaded from HuggingFac
Distributed training with @ quickly train a model wi Processors pretrainedvodel and TEPreTts
Accelerate for more in-depth expla Tokenizer
Share a model Trainer resize the input token eml
Before you begin, make
v 8 DeepSpeed Integration prune the attention heads
HOW-TO GUIDES
Feature Extractor
‘GENERAL USAGE Ipip install trans The other methods that are col
MODELS TFModuleUtilsMixin (for the
Create a custom forth
. Auto Classes TFGenerationMixin (for the Ter
architecture You'll also need to instal v\
Sharing custom models TEXT MODELS

Follow the basic instructions on inference, model loading, preprocessing, and fine-tuning in the Hug-
gingFace tutorial: https://huggingface.co/docs/transformers/quicktour. It is highly recommended
that you install the library and run the commands in the tutorial in your Google Colab? or your local
machine using Jupyter Notebook.? In the tutorial document, you can find some default classes imple-
mented by HuggingFace by scrolling down the left menu. You must first understand these abstract
classes in order to run their models. A tutorial on fine-tuning HuggingFace’s pre-trained model can
be found here: tutorial.

INote: When using Google Colab, please avoid selecting A100 GPUs as they rapidly consume your allotted compute
units. Instead, opt for L4 or T4 GPUs for a more efficient use of resources.

2https://colab.research.google.com/

Shttps://jupyter.org/

hu000562@umn.edu
wu001412@umn.edu
wu001412@umn.edu
https://colab.research.google.com/github/jckantor/CBE30338/blob/master/docs/01.01-Getting-Started-with-Python-and-Jupyter-Notebooks.ipynb
https://colab.research.google.com/github/jckantor/CBE30338/blob/master/docs/01.01-Getting-Started-with-Python-and-Jupyter-Notebooks.ipynb
https://colab.research.google.com/
https://docs.google.com/document/d/1Kdo6BN1h2yISYHTTSC6DVLWhNEaEcRxk/edit#heading=h.gjdgxs
https://huggingface.co/models
https://paperswithcode.com/
https://huggingface.co/docs/transformers/quicktour
https://huggingface.co/docs/transformers/tasks/sequence_classification
https://colab.research.google.com/
https://jupyter.org/

Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 2 of 8

Step 2: Choose a Task and Dataset

You can now select a task and dataset from the list in Table 1. Please contact the lead TA a week
before the deadline if you wish to choose another task and/or dataset. It is recommended that you
read the original paper that describes the dataset first. After that, you can download the raw dataset
or load it from the pre-formatted HuggingFace dataset. Below are links to the Papers-with-Code
leaderboard, original paper, raw dataset, and HuggingFace dataset. Check what model has currently
the best score on your dataset in the leaderboard.

Table 1: List of classification tasks and dataset. The following list contains links to the PapersWith-
Code leaderboard, HuggingFace formatted dataset, and the original paper. Question answering (QA)
tasks could be viewed as a classification task that predicts the appropriate start and end position of
your answer span given a question. Natural Language Inference (NLI) and Human-vs-GPT language
detection tasks could be viewed as classification tasks as well, as they predict the final labels (e.g.,
entail/contradict /neutral, human/GPT) given a pair of two texts. Some datasets may be too large to
train efficiently. In this case, it is fine to sample a sensible amount for each class label and include the
details in the report.

Tasks Labels Size Datasets
Sentiment classification 2 (Positive, Negative) 70K SST2 (leaderboard, HF dataset, paper)
Sentiment classification 3 (Positive, Negative, neutral) 122K DynaSent (leaderboard, HF dataset, paper)
Multi-style Classification 2-10 2K-260K xSLUE (dataset, paper)
Politeness classification Range (Very Impolite to Very 11K StanfordPoliteness (dataset, paper)

Polite)

Paper acceptance 2 (Accept, Reject) 14K PeerRead (dataset, HEF dataset, paper)
Social classification Offensive, intent, lewd, 147K Social Bias Inference (SBIC) (leaderboard, HF
target/in-group dataset, paper)

Hate Speech 3 (offensive, hatespeech, 24K Hate Speech Detection (HSD) leaderboard, HF

neither) dataset, paper)

Natural Language Inference 3 (neutral, contradict, entail) 570K SNLI (leaderboard, HF dataset, paper)

Natural Language Inference 3 (neutral, contradict, entail) 432K MNLI (leaderboard, HF dataset, paper)

Textual Similarity 2 (similar, not similar) 5.8K MRPC (leaderboard, HF dataset, paper)

Commonsense Reasoning multi-choice QA 3K-43K Winograd Challenge (leaderboard, HE dataset,
paper)

Commonsense Reasoning multi-choice QA 12K CommonsenseQA (leaderboard, HF dataset,
paper)

Question Answering Span prediction 142K SQuAD 2.0 (leaderboard, HF dataset, paper

Visual Question Answering Span prediction 22M GQA (leaderboard, HF dataset, paper)

Semantic Evaluation (Se- - - SemEval (2022), SemEval (2023), SemEval

mEval)* (2024), Other SemEval tasks in HE dataset

Human-vs-Al text detection 2 (human, AI) 436K DeepfakeTextDetect (HE dataset, paper)

Step 3: Choose a Model and Replicate it

The next step is to choose a model to replicate. You can (1) choose one of HuggingFace’s pre-trained
models, such as BERT, GPT2, or RoBERTa? (See Figure 1 (right)), and (2) fine-tune it. You have to
“train” the model, by writing your own training script for fine-tuning the pre-trained model on your

41 understand you have no idea what BERT/GPT is. We will cover them soon in the class so stay tuned.

https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary
https://huggingface.co/datasets/stanfordnlp/sst2
https://nlp.stanford.edu/sentiment/
https://paperswithcode.com/sota/sentiment-analysis-on-dynasent
https://huggingface.co/datasets/dynabench/dynasent
https://arxiv.org/abs/2012.15349
https://github.com/dykang/xslue?tab=readme-ov-file
https://arxiv.org/abs/1911.03663
https://www.cs.cornell.edu/~cristian/Politeness.html
https://aclanthology.org/P13-1025/
https://github.com/allenai/PeerRead
https://huggingface.co/datasets/allenai/peer_read
https://arxiv.org/pdf/1804.09635v1.pdf
https://paperswithcode.com/dataset/sbic
https://huggingface.co/datasets/social_bias_frames
https://huggingface.co/datasets/social_bias_frames
https://maartensap.com/social-bias-frames/index.html
https://paperswithcode.com/task/hate-speech-detection
https://huggingface.co/datasets/hate_speech_offensive
https://huggingface.co/datasets/hate_speech_offensive
https://arxiv.org/pdf/1703.04009v1.pdf
https://paperswithcode.com/sota/natural-language-inference-on-snli
https://huggingface.co/datasets/snli
https://nlp.stanford.edu/projects/snli/
https://paperswithcode.com/sota/natural-language-inference-on-multinli
https://huggingface.co/datasets/LysandreJik/glue-mnli-train
https://cims.nyu.edu/~sbowman/multinli/
https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc
https://huggingface.co/datasets/SetFit/mrpc
https://aclanthology.org/I05-5002/
https://paperswithcode.com/dataset/wsc
https://huggingface.co/datasets/winogrande
https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html
https://paperswithcode.com/sota/common-sense-reasoning-on-commonsenseqa
https://huggingface.co/datasets/commonsense_qa
https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
https://paperswithcode.com/sota/question-answering-on-squad20
https://huggingface.co/datasets/squad_v2
https://rajpurkar.github.io/SQuAD-explorer/
https://paperswithcode.com/sota/visual-question-answering-on-gqa-test2019
https://cs.stanford.edu/people/dorarad/gqa/download.html
https://cs.stanford.edu/people/dorarad/gqa/download.html
https://semeval.github.io/SemEval2022/tasks
https://alt.qcri.org/semeval2023/index.php?id=tasks
https://alt.qcri.org/semeval2024/index.php?id=tasks
https://huggingface.co/datasets?sort=downloads&search=semeval
https://huggingface.co/datasets/yaful/DeepfakeTextDetect
https://arxiv.org/pdf/2305.13242.pdf

Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 3 of 8

Sentiment Analysis on SST-2 Binary classification

Leaderboard Dataset

% Hugging Face Models Datasets 1 Spaces © Docs & Solutions Pricing Login Signup.

n-Baptiste/canenbert-nex

/elip-vit-large-patchla

2

zoberta-large distilbert-bas

Fiter: ===

| — ” e

2 T gra SOOI i of el eaming vt U o 2019 ([Tt

G google/vit-base-pateh16-224 ‘SpanBERT/spanbext-large-cased

bert-base-chinese © openai/clip-vit-base-patch32

[} Lininete-v2 @ ~xobert

Figure 1: The Papers-with-Code leaderboard of the dataset SST-2 for binary classification task (left)
and HuggingFace’s model cards on pre-trained language models, like bert-base-uncased (right)

target dataset. Note: you are not allowed to use the default Trainer function in HuggingFace like
below.

trainer = Trainer (
model=model,
args=training_args,
train_dataset=tokenized_imdb["train"],
eval_dataset=tokenized_imdb["test"],
tokenizer=tokenizer,
data_collator=data_collator,

trainer.train()

Instead, you need to implement your own Trainer like CustomTrainer and then inherit the default
Trainer except for _inner_training loop function. You can check how the default _inner training loop
is implemented. In your customized _inner_training loop function, you can just copy the code in
the default _inner_training loop function, but please understand how your training process is imple-
mented as discussed in class, such as multiple epochs of training, forward and backward propagation,
gradient update methods, gradient clipping, and parameter updating.

From the TA’s HuggingFace tutorial, here is an example CustomTrainer.

class CustomTrainer (Trainer):
def _inner_training_loop(
self, batch_size=None, args=None, resume_from_checkpoint=None, trial=None,
ignore_keys_for_eval=None

number_of_epochs = args.num_train_epochs
start = time.time ()

train_loss=[]

train_acc=1[]

eval_acc=[]

criterion = torch.nn.CrossEntropyLoss().to(device)
self .optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, 1, gamma=0.9)

train_dataloader = self.get_train_dataloader ()
eval_dataloader = self.get_eval_dataloader ()

https://github.com/huggingface/transformers/blob/main/src/transformers/trainer.py#L2191

Due: Feb 16

CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 4 of 8

max_steps = math.ceil(args.num_train_epochs * len(train_dataloader))

for epoch in range (number_of_epochs):

train_loss_per_epoch = 0
train_acc_per_epoch = 0
with tqdm(train_dataloader, unit="batch") as training_epoch:
training_epoch.set_description(f"Training Epoch {epochl}")
for step, inputs in enumerate(training_epoch):
inputs = inputs.to(device)
labels = inputs['labels']

forward pass
self .optimizer.zero_grad()
output = ... # TODO Implement by yourself

get the loss

loss = criterion ((output[?], labels) # TODO Implement by
yourself

train_loss_per_epoch += loss.item()

#calculate gradients
loss.backward ()
#update weights
self.optimizer.step ()
train_acc_per_epoch += (output['logits'].argmax(1l) == labels).sum
) .item()
adjust the learning rate
self.scheduler.step ()
train_loss_per_epoch /= len(train_dataloader)
train_acc_per_epoch /= (len(train_dataloader)*batch_size)

eval_loss_per_epoch = 0

eval_acc_per_epoch = 0

with tqgdm(eval_dataloader, unit="batch") as eval_epoch:
eval_epoch.set_description(f"Evaluation Epoch {epochl}")
... TODO Implement by yourself

eval_loss_per_epoch /= (len(eval_dataloader))

eval_acc_per_epoch /= (len(eval_dataloader)*batch_size)

print (£ '\tTrain Loss: {train_loss_per_epoch:.3f} | Train Acc: {
train_acc_per_epochx*100:.2f}%")

print (f '\tEval Loss: {eval_loss_per_epoch:.3f} | Eval Acc: {
eval_acc_per_epoch*100:.2f}7%"')

print (f'Time: {(time.time()-start)/60:.3f} minutes')

As part of your assignment or class project, you may have to change some parts of this training function
or modify outputs from forward propagation. Your submitted code should include this customized
CustomTrainer with the copied (or modified) version of _inner_training loop function.

Step 4: Analyze your classifier’s training and evaluate it on test set

Read carefully below what experiments and additional analyses should be included in your report.
Missing items will result in point deductions.

e Description of the task and models with references to the original papers and model cards/repos-

itory.

e The kind of hardware you run your model on.
e How do you ensure your model has been trained correctly? Do you have a learning curve graph

Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 5 of 8

of your training losses from forward propagation? What does it look like? We highly recommend
you use a tracking tool such as “Weights & Biases” (W&B). With a few lines of code, this lets
you automatically track the progress of training and plot learning curves. You can then export the
plots and add them to your report.

e Evaluation metrics used in your experiment.

e Test set performance and comparison with score reported in original paper AND leaderboard. A
justification is needed if it differs from the reported scores.

e Training and inference time.

e Hyperparameters used in your experiment (e.g., number of epochs, learning parameter, dropout
rate, hidden size of your model) and other details.

samples—you—willreeeiveabonuspoint: (Rev. Feb 12: The bonus point is moved to Step 6.)

e Potential modeling or representation ideas to improve the errors.
e (optional) What was the most challenging part of this homework?

Step 5: Comparison with LLM predictions

In this step, you will compare your model’s predictions with predictions from a large language model,
like Llama3 or Qwen2.5. In your spreadsheet in the previous step, you can add one more column at
the end, and include LLM predictions. In your report, you can report accuracies of LLM prediction
with the ground-truth answers as well difference between model’s predictions and LLM predictions
with justification.

To complete this step, refer to the tutorial on vLLLLM. This step may also be completed using Hugging-
face alone, if you prefer this instead of vLLM. You will need to choose which model you would like
to use. Given the memory constraints within Colab Pro, we recommend using a model which is 8B
params or smaller, such as Llama 3.2-3B, or Qwen2.5-1.5B (NOTE: If you use llama models you will
need to apply for a permission key from meta from within huggingface. You can read more here to
find out how to get and use access tokens).

In order to get accurate predictions, you have to design your prompt appropriately. For instance, you
should provide a description of your classification task, expected labels to predicted, and then input
instances:

Task: Given text, predict the sentiment of the text.
The predicted label should be either Positive, Neutral, or Negative.

Input: The weather is great
Output:

Step 6: Annotate error types and ideas to fix them

Run your model on the test set and collect at least 20° incorrectly predicted samples from the test set.
(Rev. Feb 12: Reduce the minimum number of samples from 50 to 20.) If your task has a specific
test set from the benchmark, you can use them. You now create a Google spreadsheet and store each
error sample in each row with the following information in separate columns:

e Input text

5If the errors in set samples are less than 20, it is fine to report errors less than 20.

https://docs.wandb.ai/quickstart
https://wandb.ai/wandb_fc/articles/reports/Export-Your-Data-from-W-B--Vmlldzo1NDMyODE1
https://wandb.ai/wandb_fc/articles/reports/Export-Your-Data-from-W-B--Vmlldzo1NDMyODE1
https://huggingface.co/meta-llama
https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e
https://jimtmooney.github.io/Courses/S25/index.html#classification2
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/docs/hub/en/security-tokens

Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 6 of 8

Senten
ce label
(goe]:;’pr Result Example (gold and predicted token labels) Error types | Cause (Term) L SR FEL Difficul
(Comec| (PIRF) ple (o P WP (Definition) | ngpatterns | solutions by
tWrong
)
We thus utilized Reuters news articles referred to as’
Reuters-21578 |, ' which has been widely used in text classification
v . We used a prepared SAn exception is the method proposed in
{ McCallure and Nigam , 1999) , which , instead of labeled texts , Over-generaliz
uses unlabeled texts | pre - determined categories , and keywords ation (which)
none/ |{p-02, v |defined by humans for each category G| e il
‘| definitio |0.134,'F We thus utilized Reuters news articles referred to False Positive | ation: technical method o
5 multi-term/defi
n 0.161} as ' Reuters-21578 ' which term bias proposed | nition cases
has been widely used in text classification v . We used a uses). surface
prepared SAn exception is the method proposed in { McCallure pattern bias
and Nigam , 1999) , which , instead of labeled texts
uses unlabeled texts | pre - determined categories , and keywords
defined by humans for each category
Potential solutions to fix errors # %
Heuristics: filter out term/definition only cases 22 20.8
Parse features 19 17.9
Rule: surface patterns 12 11.3
Better encoder 11 10.4
Error types for term predicti # % UNK represetnation 6 57
Over-general?zaltion: techpical term bias 26 28.9 Pattern generalization 6 57
Missing definition 13 14.4 Annotation: definition vs description 4 38
Incomplete phrase 1 12.2) .
Wrong data preprocessing 3 33 . Entity detection 4 38
Over-generalization (is a): surface pattern bias 333 Heuristics: filter out multi-term/definition cases 3 2.8
Over-generalization (is): surface pattern bias 2 22 ? (extremely difficult) 3 28
Over-generalization (has a): surface pattern bias 1 1.1 POS features 3 28
Over-generalization (which has | is the method Heuristics: filter out non-adjacent
proposed | uses): surface pattern bias 1 141 term:definition pairs 2 19

Figure 2: Example error annotations (top), example error causes (bottom left), and fixes (bottom
right) from the test set for the term-definition detection task [IXIIST20]. The ground-truth test set
has no term and definition annotated, while the model predicts Reuters-21579 and SAn exception as
terms, and been widely used in text classification v. and unlabeled texts pre-determined categories as
definitions.

e Ground-truth label (from the original data)
e Predicted label with a confidence score (i.e., softmax output from your classifier with respect to
the ground-truth label)

Go through each row and manually label them in the following categories:

Types of errors, e.g., false positive or false negative

Types or causes, e.g., over-generalization, surface pattern bias

Potential solutions to fix the cause, e.g., more training samples®, linguistic features, some rules
Rank your annotations by frequencies and show two tables of distributions of error types and
solutions

If you report the confidence score of the predicted labels (the last Linear layer’s softmax score) on the
samples in another column, you will receive a bonus point. (Rev. Feb 12: The bonus point is moved
from Step 4.)

Figure 2 shows example error annotations with their causes and fixes for the term-definition detection
task.” Please note that these types of causes and fixes are specific to the term-definition detection
task, so they are not applicable to your task. You should figure out your own error types, causes, and
fixes.

6Simply labeling most examples with “more training data” without any justification will lose points
"The task that detects spans of scientific terms and definitions defined in text

Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 7 of 8

Step 7: Visualize errors and perform qualitative analysis (Optional for Bonus
points)

In this step, you will visualize the errors with other correctly predicted samples (randomly chosen
up to 500) in a 2-dimensional semantic space and explore an overall view of how they are projected.
Figure 3 shows an example visualization on QNLI dataset.

1st Epoch

100th Epoch 200th Epoch

STL(eft nead
only)

SO,

Lwegagt . S . s E

T . ,,,r,f?;";ffd’r G £

ot i, ol T \i% = =5
4 ~.w_.‘ 54 w r

Figure 3: Example t-SNE projection of QNLI dataset (left) or multi-task learning (right) [GLS™19].
For QNLI dataset, red square and blue circles indicate the QNLI labels whether or not the question
is answerable. Incorrectly predicted samples (black) are almost randomly located in the classifiers
embedding space. For multi-task learning, as the training epochs increase (1st, 100th, and 200th), the
clear separation of different label space has been observed.

Semantic space: First, you can take vector representations of correct and incorrect samples from
the classifiers output hidden state (HuggingFace’s model output class). Then, you project them onto
reduced dimensions (i.e., 768 dimension — 2 dimensions) using dimension reduction methods like
PCA (code) or t-SNE [vdMII08] (code), following tutorials like this. Finally you can visualize the
2-dimensional scatter plot in your report with the observation you found.

When you visualize the scatter plot, please consider the following tips:

e Use Matplotlib (link) or other visualization library for visualization.

e Choose different colors and/or shapes for correct and incorrect samples to distinguish them. (red
for Positive labels, blue for Negative labels, black for incorrectly predicted labels)

e Use a legend to indicate the type of items.

e Display the model’s confidence in each sample as transparency using alpha variable (example).

Deliverables

Please upload your code, google sheet link, and report to Canvas by Feb 16, 11:59pm.

Code: You should submit a zipped file containing - your training/inference scripts or a link to your
GitHub repository - Your script for comparing with GPT predictions.

Report and Spreadsheet: Maximum six pages PDF and other supplementary documents such as
spreadsheets for error analysis. The page limit of homework doesn’t include references and an appendix
with additional information. For report, you must use this LaTex template (link). In case you haven’t
used LaTex for scientific writing, this is a great opportunity to learn how scientists and researchers
write their manuscripts using this typesetting tool called LaTex. Here is a tutorial for LaTex with
Overleaf.

https://huggingface.co/docs/transformers/main_classes/output
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://www.datacamp.com/tutorial/introduction-t-sne
https://matplotlib.org/
https://stackoverflow.com/questions/24767355/individual-alpha-values-in-scatter-plot
https://canvas.umn.edu/courses/483164/assignments/4466148
https://www.overleaf.com/read/scjnckpvdsdx#778821
https://www.latex-project.org/about/
https://www.overleaf.com/learn/latex/Tutorials
https://www.overleaf.com/learn/latex/Tutorials

Due: Feb 16 CSCI 5541 (S25) HW2: Finetuning Text Classifier using HuggingFace page 8 of 8

Formatting convention: All your files submitted should follow this naming convention: CSCI5541-
S25-HW2-{First Name}-{Last Name}.{zip,pdf,csv}.

Rubric (20 points + 2 3 bonus points)

e Code looks good, i.e., each cell in the Jupyter Notebook runs without error and outputs intended
results. (+3)

e Description of the task, dataset, models, and hardware used (+1)

e Includes appropriate references (+1)

e Explains how they checked their model was trained correctly using learning curve graphs or other
appropriate information (+42)

e Specifies evaluation metrics used in the experiment (+1)

e Discusses test set performance and comparison with score reported in original paper or leaderboard.
Includes justification if it differs from the reported scores. (+2)

e Includes training and inference time (+1)

e Includes hyperparameters used in the experiment (+1)

Hypothesis of model performance and/or some kind of discussion about what they found in their

incorrectly labeled samples (41)

Minimum of ten incorrectly predicted test samples with their ground-truth labels (4+1)

Discusses potential modeling or representation ideas to improve the errors (+1)

Annotation of error types and potential fixes (+2)

Comparison of incorrectly predicted samples with chatGPT (+1)

Follow the suggested formats (files, report format, etc) (4+2)

Model’s confidence score for the incorrectly predicted samples in the test set (Bonus +1)

(Rev. Feb 12: Missing bonus is added to the rubric.)

e Error visualizations and qualitative Analysis (Bonus +2)

References

[GLS™19] Ting Gong, Tyler Lee, Cory Stephenson, Venkata Renduchintala, Suchismita Padhy, An-
thony Ndirango, Gokce Keskin, and Oguz Elibol. A comparison of loss weighting strategies
for multi task learning in deep neural networks. IEEE Access, PP:1-1, 09 2019.

[KHS*20] Dongyeop Kang, Andrew Head, Risham Sidhu, Kyle Lo, Daniel Weld, and Marti A. Hearst.
Document-level definition detection in scholarly documents: Existing models, error ana-
lyses, and future directions. In Muthu Kumar Chandrasekaran, Anita de Waard, Guy Fei-
genblat, Dayne Freitag, Tirthankar Ghosal, Eduard Hovy, Petr Knoth, David Konopnicki,
Philipp Mayr, Robert M. Patton, and Michal Shmueli-Scheuer, editors, Proceedings of the
First Workshop on Scholarly Document Processing, pages 196206, Online, November 2020.
Association for Computational Linguistics.

[vdMHO8] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579-2605, 2008.

