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Introduction to Parallel Computing (CSCI 5451)
❑ Class Time : MW 8:15 - 9:30 am
❑ Room : Lind Hall 302
❑ Instructor: James Mooney <<moone174@umn.edu>> 
❑ TA: Wenjie Zhang <<zhan7867@umn.edu>> 
❑ Course Site: https://jimtmooney.github.io/Courses/F25/index.html 
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Course Objectives
❑ Understand what parallel computers are, why they are needed, their 

architectures and their various modes of processing
❑ Gain proficiency in OpenMP, MPI, CUDA, NCCL
❑ Learn how to think about and design parallel programs
❑ Link the above knowledge with how modern parallel programs work 

(such as attention variants & matrix multiplication in deep learning) 
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Course Site
Most course information will be on the course site
❑ Lecture slides/pdfs
❑ Homework descriptions + due dates + code
❑ Code examples from class
❑ Office Hours
❑ etc.

https://jimtmooney.github.io/Courses/F25/index.html
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Canvas
The following will be exclusively found on Canvas
❑ Homework Submissions
❑ Project Submissions
❑ Grades
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Communications
❑ We will be using slack for communications. Sometime next week I 

will be issuing announcements regarding this and all students will 
be added.

❑ Please do not use either emails or canvas for communications going 
forward.

❑ Direct inquiries on grading to Wenjie (the Graduate TA) in slack if you 
have them
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Texts (Both Optional)
● “Introduction to Parallel Computing, 2nd Edition” by V. Kumar, A. 

Grama, A. Gupta, and G. Karypis (2003) – ISBN-13: 
978-0201648652; ISBN-10: 0201648652 (Good general resource on 
parallel computing, algorithms, and methods)

● “Programming Massively Parallel Processors, Fourth Edition: A 
Hands-on Approach” by David B. Kirk and Wen-mei W. Hwu. (2022) 
– ISBN-13: 978-0323912310 (Good resource for CUDA programming, 
specifically)
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Evaluation
● Homeworks (5 individual assignments x 15%)
● Group Project (25%)
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Evaluation (Homeworks)
● Each will be given ~2 weeks to complete
● All are individual 
● Each homework writeup will include

○ Homework description (algorithm + parallel framework to use)
○ Unit tests (input & output)
○ Serial version of program

● Submissions must include
○ A zip file containing the program
○ A markdown file describing the submitted program

● Submissions must be turned in by 11:59pm of the due date
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Evaluation (Homework Grading)
● Autograded Portion

○ Does the program compile?
○ Does the program pass the published unit tests + our own internal unit 

tests?
○ Does the program achieve sufficient speedups over the serial version of 

the program?
● Human-Graded Portion

○ Does the program follow the writeup guidelines (correct APIs, etc.)?
○ Does the markdown summary accurately reflect the program?

● Autograder Testing
○ We will run the autograder at ~midnight for three days before the 

submission deadline if you wish to test your program
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Evaluation (Projects)
● Groups of 3-4
● Work on this will be semester-long
● Think early & often about your project group & potential projects
● Good projects will either

○ Target difficult-to-parallelize algorithms presented in other 
courses/external work

○ Target open-source projects with un-parallelized sections (ideally those 
which are a bottleneck to certain functionality within said project)

● I will be meeting with groups during the semester 1-2 times to 
check in on progress/directions
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Evaluation (Late Policy)
For the homeworks, a late penalty of 2.5% will be incurred for every 3 hours the 
assignment is past due. This more fractional policy is used as we know many 
students will likely be submitting their work the night of. This will still incur a 
penalty but it will be more minor. A full day late will result in a 20% penalty, 2 
days 40%, etc. Refer to the below equation for determining the exact percentage 
deducted from your final grade based on how late your assignment is.

Percentage Deducted = Math.ceil(# hours since due time / 3) * 2.5

Late projects will not be accepted unless under extenuating circumstances 
made clear in advance.
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Evaluation (Full Grade)

A : 100 ≥ T ≥ 94 A- : 94 > T ≥ 88 B+ : 88 > T ≥ 82

B : 82 > T ≥ 77 B- : 77 > T ≥ 72 C+ : 72 > T ≥ 65

C : 65 > T ≥ 60 C- : 60 > T ≥ 55 D+ : 55 > T ≥ 50

D : 50 > T ≥ 40 F : 40 > T

Grades will be assigned according to the following scale, 
where T is the total score (out of 100) you have achieved in 
this course.
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Prerequisites
❑ This course assumes that you will be comfortable with C syntax, 

debugging, and algorithms. 
❑ This is not an introductory course in programming, but in applications 

of programming to the parallel setting. 
❑ We assume that you will be able to incorporate new frameworks 

and their core ideas quickly. 
❑ We will not be teaching the basics of C programming before diving 

into the work. 
❑ Nor will we be focusing on the exact workings of some of the 

algorithms.
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Word of Caution
❑ The assignments explored in this course will get more difficult as we 

move later into the semester
❑ By the end we will be exploring advanced topics requiring comfort 

with C/exploiting memory/{graph + matrix} algorithms
❑ For assignments, we will not be reviewing the algorithms you are to 

parallelize in detail, it will be your responsibility to understand them 
and parallelize them

❑ If you do not have a strong background in programming, it is 
recommended you consider dropping the course
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General Introduction
❑ A short history
❑ Why parallel computing?
❑ Motivation: Scientific applications
❑ Levels of parallelism
❑ Introduction to parallelism: algorithms, complexity for a simple 

example
❑ Obstacles to efficiency of parallel programs
❑ Types of parallel computer organizations
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Historical Perspective: 3 Stages of Computing
1. Mechanization of arithmetic (abacus, Blaise Pascal’s Pascaline, 

Leibnitz’s Stepped Reckoner)
2. Stored Programs (Jacquard Machine, Punched Cards)
3. Merging of Mechanized Arithmetic & Stored Programs

a. Babbage Analytical Engine
b. Hollerith Machine (Census)
c. Mark 1 Computer (First Electromechanical Computer)
d. ENIAC: Electronic Computer (Again used for Census)
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Four (five) Generations:
1. Vacuum tubes
2. Transistors
3. Integrated Circuits
4. Very Large Scale Integration (VLSI)
5. **Some Japanese firms attempted to use AI ideas [LISP] and 

massive parallelism. In some ways they were too early!
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Von Neumann Architecture
❑ Central Processing Unit

o Control Unit
o Arithmetic Logic Unit (ALU)

❑ Memory Unit
o Main Memory
o Cache
o ROM

❑ Peripherals
o External Memories
o I/O Devices
o Terminals
o Printers
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Von Neumann Execution
● Fetch next instruction from memory into instruction registers
● Fetch operands from memory into data registers
● Execute instruction
● Load result into memory
● Repeat: fetch next instruction…

→ Parallelism was slowly introduced into this scheme as ICs became 
more complex/faster
→ Beginning in the late 1980s, parallelism was a major way to get 
speedups when computing
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Why Parallelism?

Last 50 years of clock speed 
improvements 
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Why Parallelism?
● Main argument: Clock speeds have largely reached their upper 

bound
● Sustainable gains in speed are only possible through better 

software, better utilization of hardware and parallelism
● Parallelism is cost-effective: multiplying hardware is cheap, fast 

components are expensive
● Parallelism helps memory-wise (multiplying memory is cheap, 

building a system with a single large memory is expensive)
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Why Supercomputers? Weather Simulation
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Why Supercomputers? Molecular Dynamics



CSCI 5541 NLP

Why Supercomputers? AI, LLMs, and Deep Learning
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Parallel Computing - Motivation - Moore’s Law
❑ Demand for computational speed is always increasing (AI, physics, 

biology, chemistry)
❑ Clock speeds became harder to increase around mid 1970s
❑ From 1950 to mid 70s, increase of 100, 000x
❑ 3 orders of magnitude from clock speeds. The other 2 design.
❑ A factor of 10 every 5 years.
❑ From 1970 to 2005: a gain of 5000x
❑ From 2005 to present: gain in clock cycle has effectively stopped



CSCI 5541 NLP

Parallel Computing - Motivation - Moore’s Law
No clock speed improvements, but 
there are many more transistors 
on each chip → how to use them?
❑ More caching/memory
❑ More parallelism (explicit & 

implicit)
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More parallelism
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Basics of Parallel Computing
Consider summing n numbers from an array x

Represented via its algorithm through n-1 sequential operations below
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Basics of Parallel Computing
Split the sum into p subsums and set m = n/p. We can parallelize this by 
summing subsets of the array in parallel, then sum each of those sums.
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Basics of Parallel Computing

Number of operations:
→ p * (m - 1) + p -1 = n - 1 (unchanged number of total operations)
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Basics of Parallel Computing

Number of operations:
→ p * (m - 1) + p -1 = n - 1 (unchanged number of total operations)

Parallel Serial
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Basics of Parallel Computing
❑ Assume n = 2k and n/2 arithmetic units are available
❑ Divide recursively into two sub-sums. Perform a cascade summation
❑ Requires log2n  steps
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Basics of Parallel Computing
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Levels of Parallelism
Five different types of parallelism commonly exploited
1. Job Level: Running entirely unrelated jobs (e.g. OS-level parallelism)
2. Macrotask level: Execution of different sections of a program (e.g. 

worker-scheduler programs, data pipelines)
3. Microtask level: Parallelism within different steps of a loop, may 

perform different tasks depending on each loop (event worker during 
data ingestion deciding how to parse each event)

4. Data Parallelism: Same operation performed on similar datasets (e.g. 
adding two vectors)

5. Arithmetic Level: Pipelining, additional functional units)
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Barriers to Parallel Efficiency
The example of adding n numbers can give an indication to a few of the 
potential barriers to efficiency: 
1. Data Movement: Data to be exchanged between processors. Data may 

have to move through several stages, or other processors, to reach its 
destination

2. Poor load balancing: Ideally: all processors should perform an equal 
share of work all the time. However, processors are often idle waiting 
data from others

3. Synchronization: Some algorithms require synchronization. This global 
operation can be costly.
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Barriers to Parallel Efficiency
4 Impact of Architecture: Often, in parallel processing, processors will be 

competing for resources, such as access to memory or cache
5 Inefficient Parallel Algorithm: Some sequential algorithms do not 

easily parallelize. New algorithms will be required - which may be 
inefficient in sequential context
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Three common parallel programming paradigms
1. Shared global Memory Viewpoint: Programs will execute in parallel 

and access a shared address space [Drawbacks → need to make sure 
that data is always synchronized] [Example: OpenMP]

2. Message Passing Viewpoint: Programs to run in parallel exchange 
data in explicit ways as determined by the user [Drawbacks: Difficult to 
program] [Example: MPI]

3. SIMD/SIMT viewpoint: Programs execute the same instructions on 
different data at the same time → extremely fast on specialized 
hardware [Drawbacks: Difficult to use with irregular computation] 
[Example: GPUs, Vector Extensions]
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