
CSCI 5451: Introduction to Parallel Computing

Lecture 1: Overview

CSCI 5541 NLP

Introduction to Parallel Computing (CSCI 5451)
❑ Class Time : MW 8:15 - 9:30 am
❑ Room : Lind Hall 302
❑ Instructor: James Mooney <<moone174@umn.edu>>
❑ TA: Wenjie Zhang <<zhan7867@umn.edu>>
❑ Course Site: https://jimtmooney.github.io/Courses/F25/index.html

mailto:moone174@umn.edu
mailto:zhan7867@umn.edu
https://jimtmooney.github.io/Courses/F25/index.html

CSCI 5541 NLP

Course Objectives
❑ Understand what parallel computers are, why they are needed, their

architectures and their various modes of processing
❑ Gain proficiency in OpenMP, MPI, CUDA, NCCL
❑ Learn how to think about and design parallel programs
❑ Link the above knowledge with how modern parallel programs work

(such as attention variants & matrix multiplication in deep learning)

CSCI 5541 NLP

Course Site
Most course information will be on the course site
❑ Lecture slides/pdfs
❑ Homework descriptions + due dates + code
❑ Code examples from class
❑ Office Hours
❑ etc.

https://jimtmooney.github.io/Courses/F25/index.html

CSCI 5541 NLP

Canvas
The following will be exclusively found on Canvas
❑ Homework Submissions
❑ Project Submissions
❑ Grades

CSCI 5541 NLP

Communications
❑ We will be using slack for communications. Sometime next week I

will be issuing announcements regarding this and all students will
be added.

❑ Please do not use either emails or canvas for communications going
forward.

❑ Direct inquiries on grading to Wenjie (the Graduate TA) in slack if you
have them

CSCI 5541 NLP

Texts (Both Optional)
● “Introduction to Parallel Computing, 2nd Edition” by V. Kumar, A.

Grama, A. Gupta, and G. Karypis (2003) – ISBN-13:
978-0201648652; ISBN-10: 0201648652 (Good general resource on
parallel computing, algorithms, and methods)

● “Programming Massively Parallel Processors, Fourth Edition: A
Hands-on Approach” by David B. Kirk and Wen-mei W. Hwu. (2022)
– ISBN-13: 978-0323912310 (Good resource for CUDA programming,
specifically)

CSCI 5541 NLP

Evaluation
● Homeworks (5 individual assignments x 15%)
● Group Project (25%)

CSCI 5541 NLP

Evaluation (Homeworks)
● Each will be given ~2 weeks to complete
● All are individual
● Each homework writeup will include

○ Homework description (algorithm + parallel framework to use)
○ Unit tests (input & output)
○ Serial version of program

● Submissions must include
○ A zip file containing the program
○ A markdown file describing the submitted program

● Submissions must be turned in by 11:59pm of the due date

CSCI 5541 NLP

Evaluation (Homework Grading)
● Autograded Portion

○ Does the program compile?
○ Does the program pass the published unit tests + our own internal unit

tests?
○ Does the program achieve sufficient speedups over the serial version of

the program?
● Human-Graded Portion

○ Does the program follow the writeup guidelines (correct APIs, etc.)?
○ Does the markdown summary accurately reflect the program?

● Autograder Testing
○ We will run the autograder at ~midnight for three days before the

submission deadline if you wish to test your program

CSCI 5541 NLP

Evaluation (Projects)
● Groups of 3-4
● Work on this will be semester-long
● Think early & often about your project group & potential projects
● Good projects will either

○ Target difficult-to-parallelize algorithms presented in other
courses/external work

○ Target open-source projects with un-parallelized sections (ideally those
which are a bottleneck to certain functionality within said project)

● I will be meeting with groups during the semester 1-2 times to
check in on progress/directions

CSCI 5541 NLP

Evaluation (Late Policy)
For the homeworks, a late penalty of 2.5% will be incurred for every 3 hours the
assignment is past due. This more fractional policy is used as we know many
students will likely be submitting their work the night of. This will still incur a
penalty but it will be more minor. A full day late will result in a 20% penalty, 2
days 40%, etc. Refer to the below equation for determining the exact percentage
deducted from your final grade based on how late your assignment is.

Percentage Deducted = Math.ceil(# hours since due time / 3) * 2.5

Late projects will not be accepted unless under extenuating circumstances
made clear in advance.

CSCI 5541 NLP

Evaluation (Full Grade)

A : 100 ≥ T ≥ 94 A- : 94 > T ≥ 88 B+ : 88 > T ≥ 82

B : 82 > T ≥ 77 B- : 77 > T ≥ 72 C+ : 72 > T ≥ 65

C : 65 > T ≥ 60 C- : 60 > T ≥ 55 D+ : 55 > T ≥ 50

D : 50 > T ≥ 40 F : 40 > T

Grades will be assigned according to the following scale,
where T is the total score (out of 100) you have achieved in
this course.

CSCI 5541 NLP

Prerequisites
❑ This course assumes that you will be comfortable with C syntax,

debugging, and algorithms.
❑ This is not an introductory course in programming, but in applications

of programming to the parallel setting.
❑ We assume that you will be able to incorporate new frameworks

and their core ideas quickly.
❑ We will not be teaching the basics of C programming before diving

into the work.
❑ Nor will we be focusing on the exact workings of some of the

algorithms.

CSCI 5541 NLP

Word of Caution
❑ The assignments explored in this course will get more difficult as we

move later into the semester
❑ By the end we will be exploring advanced topics requiring comfort

with C/exploiting memory/{graph + matrix} algorithms
❑ For assignments, we will not be reviewing the algorithms you are to

parallelize in detail, it will be your responsibility to understand them
and parallelize them

❑ If you do not have a strong background in programming, it is
recommended you consider dropping the course

CSCI 5541 NLP

General Introduction
❑ A short history
❑ Why parallel computing?
❑ Motivation: Scientific applications
❑ Levels of parallelism
❑ Introduction to parallelism: algorithms, complexity for a simple

example
❑ Obstacles to efficiency of parallel programs
❑ Types of parallel computer organizations

CSCI 5541 NLP

Historical Perspective: 3 Stages of Computing
1. Mechanization of arithmetic (abacus, Blaise Pascal’s Pascaline,

Leibnitz’s Stepped Reckoner)
2. Stored Programs (Jacquard Machine, Punched Cards)
3. Merging of Mechanized Arithmetic & Stored Programs

a. Babbage Analytical Engine
b. Hollerith Machine (Census)
c. Mark 1 Computer (First Electromechanical Computer)
d. ENIAC: Electronic Computer (Again used for Census)

CSCI 5541 NLP

Four (five) Generations:
1. Vacuum tubes
2. Transistors
3. Integrated Circuits
4. Very Large Scale Integration (VLSI)
5. **Some Japanese firms attempted to use AI ideas [LISP] and

massive parallelism. In some ways they were too early!

CSCI 5541 NLP

Von Neumann Architecture
❑ Central Processing Unit

o Control Unit
o Arithmetic Logic Unit (ALU)

❑ Memory Unit
o Main Memory
o Cache
o ROM

❑ Peripherals
o External Memories
o I/O Devices
o Terminals
o Printers

CSCI 5541 NLP

Von Neumann Execution
● Fetch next instruction from memory into instruction registers
● Fetch operands from memory into data registers
● Execute instruction
● Load result into memory
● Repeat: fetch next instruction…

→ Parallelism was slowly introduced into this scheme as ICs became
more complex/faster
→ Beginning in the late 1980s, parallelism was a major way to get
speedups when computing

CSCI 5541 NLP

Why Parallelism?

Last 50 years of clock speed
improvements

CSCI 5541 NLP

Why Parallelism?
● Main argument: Clock speeds have largely reached their upper

bound
● Sustainable gains in speed are only possible through better

software, better utilization of hardware and parallelism
● Parallelism is cost-effective: multiplying hardware is cheap, fast

components are expensive
● Parallelism helps memory-wise (multiplying memory is cheap,

building a system with a single large memory is expensive)

CSCI 5541 NLP

Why Supercomputers? Weather Simulation

CSCI 5541 NLP

Why Supercomputers? Molecular Dynamics

CSCI 5541 NLP

Why Supercomputers? AI, LLMs, and Deep Learning

CSCI 5541 NLP

Parallel Computing - Motivation - Moore’s Law
❑ Demand for computational speed is always increasing (AI, physics,

biology, chemistry)
❑ Clock speeds became harder to increase around mid 1970s
❑ From 1950 to mid 70s, increase of 100, 000x
❑ 3 orders of magnitude from clock speeds. The other 2 design.
❑ A factor of 10 every 5 years.
❑ From 1970 to 2005: a gain of 5000x
❑ From 2005 to present: gain in clock cycle has effectively stopped

CSCI 5541 NLP

Parallel Computing - Motivation - Moore’s Law
No clock speed improvements, but
there are many more transistors
on each chip → how to use them?
❑ More caching/memory
❑ More parallelism (explicit &

implicit)

CSCI 5541 NLP

CSCI 5541 NLP

More parallelism

CSCI 5541 NLP

Basics of Parallel Computing
Consider summing n numbers from an array x

Represented via its algorithm through n-1 sequential operations below

CSCI 5541 NLP

Basics of Parallel Computing
Split the sum into p subsums and set m = n/p. We can parallelize this by
summing subsets of the array in parallel, then sum each of those sums.

CSCI 5541 NLP

Basics of Parallel Computing

Number of operations:
→ p * (m - 1) + p -1 = n - 1 (unchanged number of total operations)

CSCI 5541 NLP

Basics of Parallel Computing

Number of operations:
→ p * (m - 1) + p -1 = n - 1 (unchanged number of total operations)

Parallel Serial

CSCI 5541 NLP

Basics of Parallel Computing
❑ Assume n = 2k and n/2 arithmetic units are available
❑ Divide recursively into two sub-sums. Perform a cascade summation
❑ Requires log2n steps

CSCI 5541 NLP

Basics of Parallel Computing

CSCI 5541 NLP

Levels of Parallelism
Five different types of parallelism commonly exploited
1. Job Level: Running entirely unrelated jobs (e.g. OS-level parallelism)
2. Macrotask level: Execution of different sections of a program (e.g.

worker-scheduler programs, data pipelines)
3. Microtask level: Parallelism within different steps of a loop, may

perform different tasks depending on each loop (event worker during
data ingestion deciding how to parse each event)

4. Data Parallelism: Same operation performed on similar datasets (e.g.
adding two vectors)

5. Arithmetic Level: Pipelining, additional functional units)

CSCI 5541 NLP

Barriers to Parallel Efficiency
The example of adding n numbers can give an indication to a few of the
potential barriers to efficiency:
1. Data Movement: Data to be exchanged between processors. Data may

have to move through several stages, or other processors, to reach its
destination

2. Poor load balancing: Ideally: all processors should perform an equal
share of work all the time. However, processors are often idle waiting
data from others

3. Synchronization: Some algorithms require synchronization. This global
operation can be costly.

CSCI 5541 NLP

Barriers to Parallel Efficiency
4 Impact of Architecture: Often, in parallel processing, processors will be

competing for resources, such as access to memory or cache
5 Inefficient Parallel Algorithm: Some sequential algorithms do not

easily parallelize. New algorithms will be required - which may be
inefficient in sequential context

CSCI 5541 NLP

Three common parallel programming paradigms
1. Shared global Memory Viewpoint: Programs will execute in parallel

and access a shared address space [Drawbacks → need to make sure
that data is always synchronized] [Example: OpenMP]

2. Message Passing Viewpoint: Programs to run in parallel exchange
data in explicit ways as determined by the user [Drawbacks: Difficult to
program] [Example: MPI]

3. SIMD/SIMT viewpoint: Programs execute the same instructions on
different data at the same time → extremely fast on specialized
hardware [Drawbacks: Difficult to use with irregular computation]
[Example: GPUs, Vector Extensions]

CSCI 5541 NLP

CSCI 5541 NLP

